Nox family NADPH oxidases: roles in innate immunity and inflammatory disease

Nox 家族 NADPH 氧化酶:在先天免疫和炎症性疾病中的作用

基本信息

项目摘要

This program explores innate anti-microbial defense and inflammatory mechanisms involving the host's ability to deliberately produce reactive oxygen species (ROS). Circulating phagocytes generate high levels of ROS that serve as important microbicidal agents in response to infectious or inflammatory stimuli, which is attributed to NADPH oxidase activation. Patients with chronic granulomatous disease (CGD) suffer from NADPH oxidase deficiencies, resulting in enhanced susceptibility to microbial infections and aberrant inflammatory responses. The current focus of this project explores cellular mechanisms regulating related Nox Family NADPH oxidases expressed in non-phagocytic cells (Nox1, Nox4, Duox1, Duox2), notably on mucosal surfaces (lung and gastrointestinal tract), the liver, kidney, thyroid and salivary glands, brain, and vascular tissues. Several of these non-phagocytic Nox enzymes serve in host defense and inflammatory processes, as they are expressed predominately on apical surfaces of epithelial cells and are induced or activated by cytokines or by recognition of pathogen-associated molecular patterns. ROS produced by these oxidases also provide redox signals that affect gene expression patterns during responses to infection, oxygen sensing, growth factors, hormones, cytokines, cell differentiation, cellular senescence, programmed cell death (apoptosis). In 2010, we explored host innate immune responses to two model pathogens involving excess ROS production by non-phagocytic cells: 1) Pseudomonas aeruginosa, as a bacterial pathogen that elicits Duox-derived ROS in airway epithelial cells and 2) Hepatitis C virus (HCV), as an elicitor of excess Nox4-derived ROS in infected hepatocytes, which can lead to pro-fibrotic liver injury (cirrhosis) in chronically infected patients. Using human airway epithelial cell models we compared the effects of exposure to several airway pathogens (Pseudomonas aeruginosa, Burkholderia cepacia, and Staphylococcus aureus) and showed only P. aeruginosa triggers Duox1-derived hydrogen peroxide release through a mechanism requiring extracellular calcium and exposure to freshly grown bacteria. By comparing host epithelial cell responses to various Pseudomonas mutants, we concluded that several microbial factors act cooperatively to elicit Duox activity: microbial surface factors (flagellin and lipopolysaccharide) enable adhesion to host cells, thereby promoting a more efficient Type-3 Secretion System-dependent Duox1 activation. These findings suggest a mechanism by which this pathogen is eliminated from healthy airways. In contrast, we showed that over-grown Pseudomonas cultures, as a model of the transformed state of Pseudomonas established in biofilms of chronically infected lungs, produce a redox-active virulence factor (pyocyanin) that can competitively inhibit Duox activity and produce intracellular ROS. We explored the effects of oxidative stress caused by chronic pyocyanin exposure of airway epithelial cells. Two-day pyocyanin exposure (8 micromolar) elicits secretion of several pro-inflammatory cytokines as well as epidermal growth factor receptor (EGFR) ligands that trigger transcription and release of the major airway mucins. These responses reproduce many features of the advanced cystic fibrosis disease phenotype with chronic Pseudomonas infection, suggesting that pyocyanin-mediated oxidative stress in the airway epithelium is a major determinant in airway inflammation, mucus hyper-secretion, and recruitment of circulating inflammatory cells. Our studies on innate oxidative responses to HCV infection are exploring causes of hepatic injury linked to increased transforming growth factor-beta (TGF-B) levels and hepatic fibrosis. Hepatocytes infected or transfected with HCV, or HCV core protein alone, showed increased ROS production along with increased Nox4 mRNA and protein levels. In contrast, hepatocytes expressing Nox4 short hairpin RNA (RNA interference) or a truncated, dominannt-negative form of Nox4 showed decreased ROS production when transfected with HCV. The promoters of both human and murine Nox4 demonstrated transcriptional regulation of Nox4 mRNA by HCV. Analysis of luciferase reporters tied to a series of Nox4 promoter fragments (0.7-2.4 kb) identified HCV-responsive regulatory regions modulating Nox4 expression; these human Nox4 promoter fragments were also responsive to TGF-B1. Furthermore, HCV core-dependent induction of Nox4 was blocked by TGF-B-neutralizing antibodies or the expression of dominant negative TGF-B receptor type II. Collectively, these findings identified HCV as a regulator of Nox4 expression through an autocrine TGF-B-dependent signaling mechanism. These data provide evidence that HCV-induced Nox4 contributes to ROS production that may be related to chronic HCV-induced liver disease. In efforts exploring other functional roles of Nox4 (or Renox), we are characterizing mice in which the Nox4 gene is deleted. Nox4-deficient mice exhibit a normal lifespan and phenotype in the unstressed state. Gene microarray studies are focused on identifying compensating alterations in other oxidant generating or scavenging systems to explore mechanisms maintaining normal redox homeostasis in Nox4-deficient mice. Nox4 is constitutively active, consistent with its proposed role as an oxygen-sensing enzyme. We are investigating the proposed role of Nox4 in oxygen sensing and hematopoiesis, as ROS are thought to provide feedback signals regulating renal erythropoietin synthesis. Future work will examine responses of Nox4-deficient mice to various stressors to assess potential roles of Nox4 in redox homeostasis and redox-based signaling during exposure to hypoxia, infection, or inflammation. Our advances in Duox reconstitution technology are being used to screen effects of putative Duox (or DuoxA) single nucleotide polymorphisms (SNPs) or mutations in altering oxidase function or cellular targeting, which may relate to altered susceptibilities to airway infectious or inflammatory disease (cystic fibrosis, asthma, bacterial or viral infection).
本节目探讨先天抗微生物防御和炎症机制,涉及宿主故意产生活性氧(ROS)的能力。循环吞噬细胞产生高水平的活性氧,在感染或炎症刺激下作为重要的杀微生物剂,这归因于NADPH氧化酶的激活。慢性肉芽肿病(CGD)患者患有NADPH氧化酶缺陷,导致对微生物感染的易感性增强和异常炎症反应。本项目目前的重点是探索非吞噬细胞(Nox1, Nox4, Duox1, Duox2)中表达的相关Nox家族NADPH氧化酶的细胞机制,特别是在粘膜表面(肺和胃肠道),肝脏,肾脏,甲状腺和唾液腺,大脑和血管组织。这些非吞噬性氮氧化物酶中有几种在宿主防御和炎症过程中起作用,因为它们主要在上皮细胞的顶端表面表达,并由细胞因子或病原体相关分子模式的识别诱导或激活。这些氧化酶产生的活性氧还提供氧化还原信号,影响基因在感染、氧感应、生长因子、激素、细胞因子、细胞分化、细胞衰老、细胞程序性死亡(凋亡)等过程中的表达模式。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

THOMAS LETO其他文献

THOMAS LETO的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('THOMAS LETO', 18)}}的其他基金

Role of Reactive Oxygen Species in Lymphocyte Development and Function
活性氧在淋巴细胞发育和功能中的作用
  • 批准号:
    10272142
  • 财政年份:
  • 资助金额:
    $ 145.86万
  • 项目类别:
STRUCTURE AND FUNCTION OF PHAGOCYTE PROTEINS
吞噬细胞蛋白的结构和功能
  • 批准号:
    6288893
  • 财政年份:
  • 资助金额:
    $ 145.86万
  • 项目类别:
Structure And Function Of Phagocyte Proteins
吞噬细胞蛋白的结构和功能
  • 批准号:
    6669525
  • 财政年份:
  • 资助金额:
    $ 145.86万
  • 项目类别:
NOX family NADPH oxidases: roles in innate immunity and inflammatory disease
NOX 家族 NADPH 氧化酶:在先天免疫和炎症性疾病中的作用
  • 批准号:
    10692034
  • 财政年份:
  • 资助金额:
    $ 145.86万
  • 项目类别:
Structure And Function Of Phagocyte Proteins
吞噬细胞蛋白的结构和功能
  • 批准号:
    7301886
  • 财政年份:
  • 资助金额:
    $ 145.86万
  • 项目类别:
Role of Reactive Oxygen Species in Lymphocyte Development and Function
活性氧在淋巴细胞发育和功能中的作用
  • 批准号:
    8157049
  • 财政年份:
  • 资助金额:
    $ 145.86万
  • 项目类别:
Role of Reactive Oxygen Species in Lymphocyte Development and Function
活性氧在淋巴细胞发育和功能中的作用
  • 批准号:
    8336273
  • 财政年份:
  • 资助金额:
    $ 145.86万
  • 项目类别:
Nox family NADPH oxidases: roles in innate immunity and inflammatory disease
Nox 家族 NADPH 氧化酶:在先天免疫和炎症性疾病中的作用
  • 批准号:
    8336081
  • 财政年份:
  • 资助金额:
    $ 145.86万
  • 项目类别:
Role of Reactive Oxygen Species in Lymphocyte Development and Function
活性氧在淋巴细胞发育和功能中的作用
  • 批准号:
    10927826
  • 财政年份:
  • 资助金额:
    $ 145.86万
  • 项目类别:
Role of Reactive Oxygen Species in Lymphocyte Development and Function
活性氧在淋巴细胞发育和功能中的作用
  • 批准号:
    10014150
  • 财政年份:
  • 资助金额:
    $ 145.86万
  • 项目类别:

相似国自然基金

水稻 OVATE Family Protein 8 (OsOFP8)基因的功能研究
  • 批准号:
    31671271
  • 批准年份:
    2016
  • 资助金额:
    62.0 万元
  • 项目类别:
    面上项目
del Pezzo曲面的family上的E_n向量丛
  • 批准号:
    11501201
  • 批准年份:
    2015
  • 资助金额:
    18.0 万元
  • 项目类别:
    青年科学基金项目
Pim family调控白血病细胞和造血微环境之间Cross Talk在急性髓系白血病中的作用
  • 批准号:
    81100330
  • 批准年份:
    2011
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Personal genomics analysis in the inflammatory bowel disease family
炎症性肠病家族的个体基因组学分析
  • 批准号:
    16K09317
  • 财政年份:
    2016
  • 资助金额:
    $ 145.86万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
The role of Src family tyrosine kinases in inflammatory lung disease and cancer
Src 家族酪氨酸激酶在炎症性肺病和癌症中的作用
  • 批准号:
    nhmrc : 487910
  • 财政年份:
    2008
  • 资助金额:
    $ 145.86万
  • 项目类别:
    NHMRC Project Grants
Genetic dissection of the function of the Src family tyrosine kinase Hck in inflammatory lung disease
Src 家族酪氨酸激酶 Hck 在炎症性肺病中的功能的基因剖析
  • 批准号:
    nhmrc : 280910
  • 财政年份:
    2004
  • 资助金额:
    $ 145.86万
  • 项目类别:
    NHMRC Project Grants
NOX family NADPH oxidases: roles in innate immunity and inflammatory disease
NOX 家族 NADPH 氧化酶:在先天免疫和炎症性疾病中的作用
  • 批准号:
    10692034
  • 财政年份:
  • 资助金额:
    $ 145.86万
  • 项目类别:
Nox family NADPH oxidases: roles in innate immunity and inflammatory disease
Nox 家族 NADPH 氧化酶:在先天免疫和炎症性疾病中的作用
  • 批准号:
    8336081
  • 财政年份:
  • 资助金额:
    $ 145.86万
  • 项目类别:
NOX family NADPH oxidases: roles in innate immunity and inflammatory disease
NOX 家族 NADPH 氧化酶:在先天免疫和炎症性疾病中的作用
  • 批准号:
    10014043
  • 财政年份:
  • 资助金额:
    $ 145.86万
  • 项目类别:
NOX family NADPH oxidases: roles in innate immunity and inflammatory disease
NOX 家族 NADPH 氧化酶:在先天免疫和炎症性疾病中的作用
  • 批准号:
    10272042
  • 财政年份:
  • 资助金额:
    $ 145.86万
  • 项目类别:
Nox family NADPH oxidases: roles in innate immunity and inflammatory disease
Nox 家族 NADPH 氧化酶:在先天免疫和炎症性疾病中的作用
  • 批准号:
    8555786
  • 财政年份:
  • 资助金额:
    $ 145.86万
  • 项目类别:
Nox family NADPH oxidases: roles in innate immunity and inflammatory disease
Nox 家族 NADPH 氧化酶:在先天免疫和炎症性疾病中的作用
  • 批准号:
    7964313
  • 财政年份:
  • 资助金额:
    $ 145.86万
  • 项目类别:
Nox family NADPH oxidases: roles in innate immunity and inflammatory disease
Nox 家族 NADPH 氧化酶:在先天免疫和炎症性疾病中的作用
  • 批准号:
    7732482
  • 财政年份:
  • 资助金额:
    $ 145.86万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了