Improving Modeling by Learning from Details of High Accuracy Protein Structures

通过学习高精度蛋白质结构的细节来改进建模

基本信息

  • 批准号:
    8895978
  • 负责人:
  • 金额:
    $ 20.68万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2008
  • 资助国家:
    美国
  • 起止时间:
    2008-08-01 至 2017-07-31
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): The functions of proteins depend exquisitely on their structure, with details at the 0.1 � scale influencing enzyme catalysis, disease-causing mutations, and drug recognition. For this reason, having detailed and accurate structures of proteins is a cornerstone of modern biomedical research, and the NIH funded the Protein Structure Initiative with the goal of obtaining models for every protein structure with an accuracy approaching that of a high-resolution crystal structure. Current technology for template-based modeling is powerful, but cannot yet deliver "near-crystal-structure" quality. Tests show that the best minimization routines still fall short of consistently producing protein models for close homologs that approach within ~1 � rmsd of the 'native' structure as ultimately revealed by crystal structures. To help break through this 1 � barrier, during the previous period of support we used ultrahigh-resolution structures to create a library of conformation- dependent ideal geometry functions for the protein backbone, and showed that its use improves the quality of protein crystal structures and holds promise to improve template-based model refinement. We also discovered that ultrahigh-resolution crystal structures are a rich source of details about protein structure that are not accurately attainable from structures in the ~1.5-2 � resolution range and thus have not yet been fully accounted for in current energy functions. Here, our central hypothesis is that a major step forward in template-based modeling accuracy will come from identifying and explicitly taking into account detailed features of protein covalent geometry, conformation and non-covalent packing interactions that have not yet been characterized, and can now be gleaned from the study of highly accurate ultrahigh-resolution protein structures. The overall goal of our proposal is to mine such information so it can be used to improve the accuracy of predictive modeling. With many ultrahigh-resolution structures now available, the time is ripe to achieve this goal by pursuing three specific aims related to (1) extending the impact of the 'ideal geometry function' paradigm by creating, optimizing, and implementing conformation- dependent libraries accounting for peptide planarity, side chains, and cis-peptides, (2) mining ultrahigh- resolution crystal structures to glean information for next-generation empirical energy functions, and (3) analyzing ultrahigh-resolution protein structures solved in varying environments to produce a set of benchmark test cases and developing residue level assessment tools to use with these test cases to evaluate and hone template-based modeling refinement applications. This proposed work is low cost and low risk, and has a high likelihood of substantial impact as it provides basic information that can be widely incorporated into predictive and experimental modeling applications to improve their accuracy. It is also distinct from major efforts being invested into template-based modeling. Introducing this greater level of realism is a prerequisite to improving the refinement step of template-based modeling and achieving the goals of the Protein Structure Initiative.
描述(由申请人提供):蛋白质的功能非常依赖于它们的结构,0.1级的细节影响酶催化、致病突变和药物识别。因此,拥有详细而准确的蛋白质结构是现代生物医学研究的基石,美国国立卫生研究院资助了蛋白质结构倡议,其目标是精确地获得每种蛋白质结构的模型

项目成果

期刊论文数量(18)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A fresh look at the Ramachandran plot and the occurrence of standard structures in proteins.
  • DOI:
    10.1515/bmc.2010.022
  • 发表时间:
    2010-10
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Hollingsworth SA;Karplus PA
  • 通讯作者:
    Karplus PA
Native proteins trap high-energy transit conformations.
天然蛋白质捕获高能转运构象。
  • DOI:
    10.1126/sciadv.1501188
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    13.6
  • 作者:
    Brereton,AndrewE;Karplus,PAndrew
  • 通讯作者:
    Karplus,PAndrew
Evolutionary origin of a secondary structure: π-helices as cryptic but widespread insertional variations of α-helices that enhance protein functionality.
  • DOI:
    10.1016/j.jmb.2010.09.034
  • 发表时间:
    2010-11-26
  • 期刊:
  • 影响因子:
    5.6
  • 作者:
    Cooley RB;Arp DJ;Karplus PA
  • 通讯作者:
    Karplus PA
Protein Geometry Database: a flexible engine to explore backbone conformations and their relationships to covalent geometry.
  • DOI:
    10.1093/nar/gkp1013
  • 发表时间:
    2010-01
  • 期刊:
  • 影响因子:
    14.9
  • 作者:
    Berkholz DS;Krenesky PB;Davidson JR;Karplus PA
  • 通讯作者:
    Karplus PA
Reinterpretation of the electron density at the site of the eighth bacteriochlorophyll in the FMO protein from Pelodictyon phaeum.
  • DOI:
    10.1007/s11120-012-9735-8
  • 发表时间:
    2012-04
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    Tronrud, Dale E.;Allen, James P.
  • 通讯作者:
    Allen, James P.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Paul Andrew KARPLUS其他文献

Paul Andrew KARPLUS的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Paul Andrew KARPLUS', 18)}}的其他基金

Improving Modeling by Learning from Details of High Accuracy Protein Structures
通过学习高精度蛋白质结构的细节来改进建模
  • 批准号:
    8708105
  • 财政年份:
    2008
  • 资助金额:
    $ 20.68万
  • 项目类别:
Improving Modeling by Learning from Details of High Accuracy Protein Structures
通过学习高精度蛋白质结构的细节来改进建模
  • 批准号:
    8547080
  • 财政年份:
    2008
  • 资助金额:
    $ 20.68万
  • 项目类别:
Empirical conformation-dependent covalent geometry variation in proteins
蛋白质中经验构象依赖性共价几何变化
  • 批准号:
    7905142
  • 财政年份:
    2008
  • 资助金额:
    $ 20.68万
  • 项目类别:
Empirical conformation-dependent covalent geometry variation in proteins
蛋白质中经验构象依赖性共价几何变化
  • 批准号:
    8111114
  • 财政年份:
    2008
  • 资助金额:
    $ 20.68万
  • 项目类别:
Improving Modeling by Learning from Details of High Accuracy Protein Structures
通过学习高精度蛋白质结构的细节来改进建模
  • 批准号:
    8438862
  • 财政年份:
    2008
  • 资助金额:
    $ 20.68万
  • 项目类别:
Empirical conformation-dependent covalent geometry variation in proteins
蛋白质中经验构象依赖性共价几何变化
  • 批准号:
    7656854
  • 财政年份:
    2008
  • 资助金额:
    $ 20.68万
  • 项目类别:
Empirical conformation-dependent covalent geometry variation in proteins
蛋白质中经验构象依赖性共价几何变化
  • 批准号:
    7525973
  • 财政年份:
    2008
  • 资助金额:
    $ 20.68万
  • 项目类别:

相似海外基金

Establishment of a method for evaluating automobile driving ability focusing on frontal lobe functions and its application to accident prediction
以额叶功能为中心的汽车驾驶能力评价方法的建立及其在事故预测中的应用
  • 批准号:
    20K07947
  • 财政年份:
    2020
  • 资助金额:
    $ 20.68万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Evaluation of the Effectiveness of Multi-Professional Collaborative Assessment of Cognitive Function and Automobile Driving Skills and Comprehensive Support
认知功能与汽车驾驶技能多专业协同评估效果评价及综合支持
  • 批准号:
    17K19824
  • 财政年份:
    2017
  • 资助金额:
    $ 20.68万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
Development of Flexible Automobile Driving Interface for Disabled People
残疾人灵活汽车驾驶界面开发
  • 批准号:
    25330237
  • 财政年份:
    2013
  • 资助金额:
    $ 20.68万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Automobile driving among older people with dementia: the effect of an intervention using a support manual for family caregivers
患有痴呆症的老年人的汽车驾驶:使用家庭护理人员支持手册进行干预的效果
  • 批准号:
    23591741
  • 财政年份:
    2011
  • 资助金额:
    $ 20.68万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了