Omics-Based Predictive Modeling of Age-Dependent Outcome to Influenza Infection
基于组学的流感感染年龄依赖性结果预测模型
基本信息
- 批准号:8896419
- 负责人:
- 金额:$ 262.87万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2013
- 资助国家:美国
- 起止时间:2013-09-01 至 2018-08-31
- 项目状态:已结题
- 来源:
- 关键词:AdultAffectAgeAnimal ModelBedside TestingsBehaviorBindingBiologicalBiological MarkersCessation of lifeClinicalComplexComputer SimulationDataDevelopmentDiabetes MellitusDiseaseDisease OutcomeFerretsGoalsHospitalizationHumanImmune responseInfectionInfluenzaInfluenza A Virus, H1N1 SubtypeInstructionInterleukin-17Interleukin-6Lower respiratory tract structureMeasurementMorbidity - disease rateNeonatalOutcomePatientsPhysiologicalPrognostic MarkerPublic HealthRNARespiratory Tract DiseasesRiskRisk FactorsSamplingSeveritiesSystemTNF geneTissuesTranscriptTranslatingViralVirus DiseasesWhole Organismage relatedagedbasedata modelingmathematical modelmortalityoutcome forecastpathogenpreclinical studypredictive modelingprotein metaboliterespiratoryresponsetraittranscriptomicsvirus host interaction
项目摘要
Influenza is a major public health concern around the world and determining the prognosis of an infected
patient who was otherwise healthy is often a major challenge. In 2009, infections with the H1N1 strain
resulted in 274,000 hospitalizations and 12,470 deaths. Risk factors for morbidity and mortality include age,
co-morbid illness, such as diabetes meNitus, and lower respiratory tract disease. Viral infection is initiated in
the upper ainway and, in severe cases, followed by progression to lower tract disease. In both human studies
and pre-clinical animal models, several biomarkers have been associated with more severe disease,
including TNF-a, IL-6, and IL-17. Host response to influenza infection is a complex trait that involves entire
host-pathogen interaction networks of RNA transcripts, proteins and metabolites impacting cellular, tissue
and whole organism behaviors that ultimately define both the risk and severity of infection. The complex
array of these interacting factors affect entire network states that in turn increase or decrease the risk of
infection or the severity of response to infection. The focus of our project is to integrate multi-scale data
collected over the course of influenza infections-including system-wide transcriptomics and meta-
transcriptomics, immunological response and physiological markers, along with viral diversity-in order to
perform network analyses and develop computational models that predict severe disease outcome. Our goal
is to leverage the power of high-dimensional, large-scale Omics data and mathematical modeling to identify
risk-stratifying prognostic biomarkers that could be used in the development of point-of-care testing
applicable to clinical respiratory samples to identify patients at risk for severe influenza disease. To achieve
this goal, we will build predictive models from molecular interaction networks, translated to specific severity
outcomes. We propose to use an age-dependent animal model (neonatal, adult and aged ferrets) and
clinical human samples to collect biological measurements at multiple scales of host-virus interaction.
RELEVANCE (See instructions):
流感是世界范围内的一个主要公共卫生问题,并决定了感染者的预后。
通常是一个重大的挑战。2009年,H1N1病毒感染
导致274 000人住院治疗,12 470人死亡。发病率和死亡率的风险因素包括年龄,
合并症,如糖尿病和下呼吸道疾病。病毒感染开始于
上尿路疾病,严重者发展为下尿路疾病。在这两项人类研究中
和临床前动物模型,几种生物标志物与更严重的疾病相关,
包括TNF-α、IL-6和IL-17。宿主对流感感染的反应是一个复杂的特征,
影响细胞、组织和免疫系统的RNA转录物、蛋白质和代谢物的宿主-病原体相互作用网络
以及整个生物体的行为,最终决定了感染的风险和严重程度。复杂
这些相互作用的因素会影响整个网络状态,进而增加或减少
感染或对感染反应的严重程度。我们项目的重点是整合多尺度数据
在流感感染过程中收集的数据,包括全系统转录组学和Meta分析,
转录组学、免疫反应和生理标记,沿着病毒多样性,
进行网络分析并开发预测严重疾病结果的计算模型。我们的目标
是利用高维、大规模组学数据和数学建模的力量来识别
可用于开发即时检测的风险分层预后生物标志物
适用于临床呼吸道样本,以识别存在严重流感疾病风险的患者。实现
为了实现这一目标,我们将从分子相互作用网络中建立预测模型,
结果。我们建议使用年龄依赖性动物模型(新生、成年和老年雪貂),
临床人类样本,以收集宿主-病毒相互作用的多个尺度的生物学测量值。
相关性(参见说明):
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Elodie Ghedin其他文献
Elodie Ghedin的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Elodie Ghedin', 18)}}的其他基金
Metabolic network reconstruction in Filaria-Wolbachia symbiosis
丝虫-沃尔巴克氏菌共生的代谢网络重建
- 批准号:
9292255 - 财政年份:2016
- 资助金额:
$ 262.87万 - 项目类别:
Omics-Based Predictive Modeling of Age-Dependent Outcome to Influenza Infection
基于组学的流感感染年龄依赖性结果预测模型
- 批准号:
8702534 - 财政年份:2013
- 资助金额:
$ 262.87万 - 项目类别:
Omics-Based Predictive Modeling of Age-Dependent Outcome to Influenza Infection
基于组学的流感感染年龄依赖性结果预测模型
- 批准号:
9124711 - 财政年份:2013
- 资助金额:
$ 262.87万 - 项目类别:
Omics-Based Predictive Modeling of Age-Dependent Outcome to Influenza Infection
基于组学的流感感染年龄依赖性结果预测模型
- 批准号:
8859388 - 财政年份:2013
- 资助金额:
$ 262.87万 - 项目类别:
Omics-Based Predictive Modeling of Age-Dependent Outcome to Influenza Infection
基于组学的流感感染年龄依赖性结果预测模型
- 批准号:
9331417 - 财政年份:2013
- 资助金额:
$ 262.87万 - 项目类别:
Omics-Based Predictive Modeling of Age-Dependent Outcome to Influenza Infection
基于组学的流感感染年龄依赖性结果预测模型
- 批准号:
8725576 - 财政年份:2013
- 资助金额:
$ 262.87万 - 项目类别:
Pathogenesis of Obstruction/Emphysema and the Microbiome (POEM) in HIV
HIV 阻塞/肺气肿和微生物群 (POEM) 的发病机制
- 批准号:
7936916 - 财政年份:2009
- 资助金额:
$ 262.87万 - 项目类别:
Pathogenesis of Obstruction/Emphysema and the Microbiome (POEM) in HIV
HIV 阻塞/肺气肿和微生物群 (POEM) 的发病机制
- 批准号:
8119687 - 财政年份:2009
- 资助金额:
$ 262.87万 - 项目类别:
Pathogenesis of Obstruction/Emphysema and the Microbiome (POEM) in HIV
HIV 阻塞/肺气肿和微生物群 (POEM) 的发病机制
- 批准号:
8308436 - 财政年份:2009
- 资助金额:
$ 262.87万 - 项目类别:
相似海外基金
Hormone therapy, age of menopause, previous parity, and APOE genotype affect cognition in aging humans.
激素治疗、绝经年龄、既往产次和 APOE 基因型会影响老年人的认知。
- 批准号:
495182 - 财政年份:2023
- 资助金额:
$ 262.87万 - 项目类别:
Investigating how alternative splicing processes affect cartilage biology from development to old age
研究选择性剪接过程如何影响从发育到老年的软骨生物学
- 批准号:
2601817 - 财政年份:2021
- 资助金额:
$ 262.87万 - 项目类别:
Studentship
RAPID: Coronavirus Risk Communication: How Age and Communication Format Affect Risk Perception and Behaviors
RAPID:冠状病毒风险沟通:年龄和沟通方式如何影响风险认知和行为
- 批准号:
2029039 - 财政年份:2020
- 资助金额:
$ 262.87万 - 项目类别:
Standard Grant
Neighborhood and Parent Variables Affect Low-Income Preschool Age Child Physical Activity
社区和家长变量影响低收入学龄前儿童的身体活动
- 批准号:
9888417 - 财政年份:2019
- 资助金额:
$ 262.87万 - 项目类别:
The affect of Age related hearing loss for cognitive function
年龄相关性听力损失对认知功能的影响
- 批准号:
17K11318 - 财政年份:2017
- 资助金额:
$ 262.87万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Affect regulation and Beta Amyloid: Maturational Factors in Aging and Age-Related Pathology
影响调节和 β 淀粉样蛋白:衰老和年龄相关病理学中的成熟因素
- 批准号:
9320090 - 财政年份:2017
- 资助金额:
$ 262.87万 - 项目类别:
Affect regulation and Beta Amyloid: Maturational Factors in Aging and Age-Related Pathology
影响调节和 β 淀粉样蛋白:衰老和年龄相关病理学中的成熟因素
- 批准号:
10166936 - 财政年份:2017
- 资助金额:
$ 262.87万 - 项目类别:
Affect regulation and Beta Amyloid: Maturational Factors in Aging and Age-Related Pathology
影响调节和 β 淀粉样蛋白:衰老和年龄相关病理学中的成熟因素
- 批准号:
9761593 - 财政年份:2017
- 资助金额:
$ 262.87万 - 项目类别:
How age dependent molecular changes in T follicular helper cells affect their function
滤泡辅助 T 细胞的年龄依赖性分子变化如何影响其功能
- 批准号:
BB/M50306X/1 - 财政年份:2014
- 资助金额:
$ 262.87万 - 项目类别:
Training Grant
Inflamm-aging: What do we know about the effect of inflammation on HIV treatment and disease as we age, and how does this affect our search for a Cure?
炎症衰老:随着年龄的增长,我们对炎症对艾滋病毒治疗和疾病的影响了解多少?这对我们寻找治愈方法有何影响?
- 批准号:
288272 - 财政年份:2013
- 资助金额:
$ 262.87万 - 项目类别:
Miscellaneous Programs