Analyzing Neural Stem Cell Clonal Development

分析神经干细胞克隆发育

基本信息

  • 批准号:
    8913708
  • 负责人:
  • 金额:
    $ 35.09万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2011
  • 资助国家:
    美国
  • 起止时间:
    2011-09-01 至 2017-07-31
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): The goal of this research is to develop a new class of computational tools to analyze the spatiotemporal dynamics of clonal (family tree) development of neural stem cells (NSCs) by analyzing time lapse microscopy images. These computational tools will automatically segment or delineate individual cells in each image frame. The cells will be tracked to establish temporal correspondences. Lineaging will establish parent-child relationships among the cells and generate the lineage tree, a powerful representation that captures many of the important properties of clonal development. A user interface will be developed for viewing and editing the results of the automatic segmentation, tracking and lineaging. A new immunostaining multiplexing tool will provide detailed information on the types of neurons produced after all of the stem cells have terminally differentiated. Computational analyses of the segmentation, tracking, lineaging, and immunostaining results have the potential to enable a variety of important new experiments in developmental and cancer biology. In previous research, we developed uniquely sensitive tools based on algorithmic information theory that use a multivariate, multiresolution approach to analyzing biological image sequence data. In one exciting discovery, these software tools established that the fate of retinal stem cells can be accurately predicted from their dynamic behaviors. Here, we will apply these novel "computational sensing" approaches to studying stem cell clonal development. The project will proceed by capturing image sequence data showing clonal development from a single neural stem cell through multiple rounds of cell division to the ultimate differentiated progeny. The software tools will be developed in the context of three important biological questions. First, by imaging stem cells from different regions of the mouse cerebral cortex, we will identify whether region specification is encoded in lineage trees. Second, we will consider the role of FGF 10, an environmental factor related to regional specification, in imparting area specific developmental patterns to neurons from the cerebral cortex. Finally, we will analyze the role that syndecan1, an in vivo niche factor that causes lineage progression of NSCs and is upregulated in brain tumors, plays on NSC clonal development. These are fundamental questions in neurobiology that cannot be addressed without these new computational tools. The ultimate goal of this project is to develop a set of tools that is widely and generally applicable and that enables a new high throughput analysis approach for studying stem and tumorigenic cell clonal development. These tools will be developed in the context of three important questions from developmental biology. These questions concerning the fundamental dynamic behavior of NSCs and the influence of specific exogenous factors on this behavior require analysis of hundreds of lineage trees to define statistically meaningful differences. This was not possible in the past using manually constructed lineage trees. With the development of the computational tools described here, such analyses will now be within reach.
描述(由申请人提供):本研究的目标是开发一类新的计算工具,通过分析延时显微镜图像来分析神经干细胞(NSCs)克隆(家谱)发育的时空动态。 这些计算工具将自动分割或描绘每个图像帧中的单个细胞。 将跟踪细胞以建立时间对应关系。 谱系化将在细胞之间建立父子关系,并生成谱系树,这是一种强大的表示方法,可以捕获克隆发育的许多重要特性。 将开发一个用户界面,用于查看和编辑自动分割、跟踪和谱系化的结果。 一种新的免疫染色多重工具将提供所有干细胞终末分化后产生的神经元类型的详细信息。 分割,跟踪,谱系和免疫染色结果的计算分析有可能使各种重要的新实验在发育和癌症生物学。 在以前的研究中,我们开发了基于算法信息论的独特敏感工具,该工具使用多变量,多分辨率方法来分析生物图像序列数据。 在一个令人兴奋的发现中,这些软件工具确定了视网膜干细胞的命运可以从它们的动态行为中准确预测。 在这里,我们将应用这些新的“计算传感”的方法来研究干细胞克隆发展。 该项目将通过捕获图像序列数据来进行,这些图像序列数据显示从单个神经干细胞通过多轮细胞分裂到最终分化的后代的克隆发育。 软件工具将在三个重要的生物学问题的背景下开发。 首先,通过对来自小鼠大脑皮层不同区域的干细胞进行成像,我们将确定区域规范是否在谱系树中编码。 其次,我们将考虑FGF 10的作用,一个环境因素有关的区域规范,在赋予区域特定的发展模式,从大脑皮层的神经元。 最后,我们将分析syndecan1的作用,syndecan1是一种体内小生境因子,导致神经干细胞的谱系进展,并在脑肿瘤中上调,对神经干细胞克隆发育起作用。 这些都是神经生物学中的基本问题,没有这些新的计算工具就无法解决。 该项目的最终目标是开发一套广泛适用的工具,并为研究干细胞和致瘤细胞克隆发育提供一种新的高通量分析方法。 这些工具将在发育生物学的三个重要问题的背景下开发。 这些问题涉及神经干细胞的基本动力学行为和特定外源性因素对这种行为的影响,需要分析数百个谱系树,以确定统计学上有意义的差异。 这在过去使用手动构建的谱系树是不可能的。 随着这里所描述的计算工具的发展,这种分析现在将触手可及。

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Segmentation of occluded hematopoietic stem cells from tracking.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

andrew Robert cohen其他文献

andrew Robert cohen的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('andrew Robert cohen', 18)}}的其他基金

Analyzing Neural Stem Cell Clonal Development
分析神经干细胞克隆发育
  • 批准号:
    8219679
  • 财政年份:
    2011
  • 资助金额:
    $ 35.09万
  • 项目类别:
Analyzing Neural Stem Cell Clonal Development
分析神经干细胞克隆发育
  • 批准号:
    8327130
  • 财政年份:
    2011
  • 资助金额:
    $ 35.09万
  • 项目类别:
Analyzing Neural Stem Cell Clonal Development
分析神经干细胞克隆发育
  • 批准号:
    8720827
  • 财政年份:
    2011
  • 资助金额:
    $ 35.09万
  • 项目类别:
Analyzing Neural Stem Cell Clonal Development
分析神经干细胞克隆发育
  • 批准号:
    8550547
  • 财政年份:
    2011
  • 资助金额:
    $ 35.09万
  • 项目类别:

相似海外基金

DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
  • 批准号:
    EP/Y029089/1
  • 财政年份:
    2024
  • 资助金额:
    $ 35.09万
  • 项目类别:
    Research Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
  • 批准号:
    2337776
  • 财政年份:
    2024
  • 资助金额:
    $ 35.09万
  • 项目类别:
    Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
  • 批准号:
    2338816
  • 财政年份:
    2024
  • 资助金额:
    $ 35.09万
  • 项目类别:
    Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
  • 批准号:
    2338846
  • 财政年份:
    2024
  • 资助金额:
    $ 35.09万
  • 项目类别:
    Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
  • 批准号:
    2348261
  • 财政年份:
    2024
  • 资助金额:
    $ 35.09万
  • 项目类别:
    Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
  • 批准号:
    2348346
  • 财政年份:
    2024
  • 资助金额:
    $ 35.09万
  • 项目类别:
    Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
  • 批准号:
    2348457
  • 财政年份:
    2024
  • 资助金额:
    $ 35.09万
  • 项目类别:
    Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
  • 批准号:
    2404989
  • 财政年份:
    2024
  • 资助金额:
    $ 35.09万
  • 项目类别:
    Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
  • 批准号:
    2339310
  • 财政年份:
    2024
  • 资助金额:
    $ 35.09万
  • 项目类别:
    Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
  • 批准号:
    2339669
  • 财政年份:
    2024
  • 资助金额:
    $ 35.09万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了