Ca2+ and ROS Crosstalk Signaling in Cardiac Mitochondria
心脏线粒体中的 Ca2 和 ROS 串扰信号传导
基本信息
- 批准号:8761519
- 负责人:
- 金额:$ 38.75万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2010
- 资助国家:美国
- 起止时间:2010-01-01 至 2018-04-30
- 项目状态:已结题
- 来源:
- 关键词:AgingAnimal ModelBiochemistryBiological AssayBiophysicsBuffersCalciumCardiacCardiac MyocytesCarrier ProteinsCell DeathCell Fate ControlCellsCellular biologyCessation of lifeChronicCoiled-Coil DomainComplexCytosolDiabetes MellitusDiffuseDiseaseDynaminEchocardiographyElectron MicroscopyElementsEnvironmentEventFailureFeedbackFluorescence Resonance Energy TransferFunctional disorderGenerationsGenesGoalsHeartHeart DiseasesHeart failureHomeostasisHumanHydrogen PeroxideIn SituIn VitroInfusion proceduresInjuryKnock-in MouseKnock-outLeadLightLipid BilayersMass Spectrum AnalysisMetabolic DiseasesMitochondriaModelingMolecularMolecular BiologyMorphologyMusMyocardial IschemiaNeurodegenerative DisordersOxidation-ReductionOxidative StressPathologyPhenylephrinePhosphorylationPhosphorylation SitePhysiologicalPhysiologyPost-Translational Protein ProcessingProductionProteinsRNA InterferenceReactive Oxygen SpeciesRegulationReportingResearchResearch Project GrantsRoleSamplingSarcoplasmic ReticulumSignal PathwaySignal TransductionStimulusStressTechniquesTestingTherapeuticTransducersTyrosine PhosphorylationWorkcell injuryclinical phenotypeheart cellhuman diseasein vivoinsightmitochondrial dysfunctionmitochondrial permeability transition poremouse modelnoveloverexpressionprotein tyrosine kinase PYK2public health relevancesudden cardiac deathuptake
项目摘要
DESCRIPTION (provided by applicant): The pivotal role of mitochondrial Ca2+, reactive oxygen species (ROS), and morphology in controlling cell fate is well recognized. In cardiac muscle cells, it has been proposed that increases in mitochondrial Ca2+ concentrations ([Ca2+]m) enhance ATP and ROS generation as well as mitochondrial fission. However, the precise contribution of mitochondrial Ca2+ uniporter (mtCU), the primary mechanism for mitochondrial Ca2+ influx, in regulating mitochondrial ATP, ROS, and fission is still inconclusive mostly due to the lack of its molecular identity. Furthermore, without the molecular information, i has been challenging to study the molecular mechanisms of how mtCU is regulated in the physiological and pathological conditions. In 2011, two ground-breaking studies have elucidated the molecular components of the mtCU complexes including the pore forming unit (MCU), the coiled-coil domain-containing protein 109A (CCDC109A), and regulatory components (MICU1-3). Meanwhile, it has gained appreciation that Ca2+-dependent redox-sensitive proline-rich tyrosine kinase 2 (Pyk2) functions as a key transducer of stress stimuli involved in pathological cardiac remodeling and the progression of heart failure (HF). Intriguingly, basal tyrosine phosphorylation of CCDC109A was reported from mass spectroscopy analyses of human and mouse samples. Finally, mitochondrial Ca2+ overload can cause HF through events (e.g. oxidative stress and energy depletion) associated with the opening of mitochondrial permeability transition pores (mPTP). We hypothesize that Pyk2 phosphorylates MCU that increases the number of tetrametric channels by oligomerization so that mitochondrial Ca2+ uptake is enhanced. The increases in [Ca2+]m augments ROS generation. This increase in ROS promotes mitochondrial fission. Physiologically, mitochondrial Ca2+ and fission work in concert to increase ATP production efficiently. However, under stress, excessive Pyk2 and MCU activation leads to pathologically high levels of mitochondrial Ca2+, fission, and ROS, which cause prolonged mPTP opening, resulting in cell injury/death and subsequent HF. To test this hypothesis, we will employ multiple techniques including biochemistry (from in vitro to in situ assays), molecular biology (gene knock in or knock out, overexpression, RNA interference), cell biology (confocal, fluorescence resonance energy transfer, electron microscopy), biophysics (single channel recordings with lipid bilayer or mitoplast), cardiac physiology (echocardiogram), and phenylephrine infusion mouse model of HF, to obtain experimental results that will lead to mechanistic insights. The feature of pinpointing the precise phosphorylation sites of MCU by Pyk2 and demonstrating the formation of functional Ca2+ permeable channels through MCU oligomerization is unique. The elucidation of molecular mechanisms how increases in [Ca2+]m induce fission will significantly add novel insights regarding crosstalk signaling between mitochondrial form and function. Finally, the prospect of tweaking Pyk2/MCU signaling pathways for treating human diseases will be encouraging because the destruction of mitochondrial Ca2+ homeostasis is a key element for leading to mitochondrial dysfunction-associated clinical phenotypes including heart diseases (e.g. HF), neurodegenerative diseases, metabolic diseases (diabetes), and aging.
描述(由申请人提供):线粒体Ca2+,活性氧(ROS)和形态在控制细胞命运中的关键作用是公认的。在心肌细胞中,已经提出线粒体Ca2+浓度([Ca2+]m)的增加可以增强ATP和ROS的产生以及线粒体裂变。然而,线粒体Ca2+单转运体(线粒体Ca2+内流的主要机制)在调节线粒体ATP、ROS和裂变中的确切作用仍然不确定,主要是由于缺乏其分子特性。此外,由于缺乏mtCU的分子信息,研究mtCU在生理和病理条件下如何调控的分子机制一直是一个挑战。2011年,两项突破性的研究阐明了mtCU复合物的分子组成,包括孔隙形成单元(MCU)、含螺旋结构域的蛋白109A (CCDC109A)和调控组分(MICU1-3)。同时,人们已经认识到Ca2+依赖的氧化还原敏感的富含脯氨酸的酪氨酸激酶2 (Pyk2)是参与病理性心脏重塑和心力衰竭(HF)进展的应激刺激的关键换能器。有趣的是,从人类和小鼠样本的质谱分析中报道了CCDC109A的基础酪氨酸磷酸化。最后,线粒体Ca2+超载可通过与线粒体通透性过渡孔(mPTP)打开相关的事件(例如氧化应激和能量消耗)引起HF。我们假设Pyk2磷酸化MCU,通过寡聚化增加四聚体通道的数量,从而增强线粒体Ca2+摄取。[Ca2+]m的增加增加了ROS的产生。ROS的增加促进了线粒体分裂。生理上,线粒体Ca2+和裂变协同工作,有效地增加ATP的产生。然而,在压力下,过度的Pyk2和MCU激活会导致线粒体Ca2+、裂变和ROS的病理高水平,从而导致mPTP开放时间延长,导致细胞损伤/死亡和随后的HF。为了验证这一假设,我们将采用多种技术,包括生物化学(从体外到原位检测)、分子生物学(基因敲入或敲除、过表达、RNA干扰)、细胞生物学(共聚焦、荧光共振能量转移、电子显微镜)、生物物理学(脂质双分子层或丝裂体单通道记录)、心脏生理学(超声心动图)和苯肾上腺素输注小鼠心衰模型。为了获得实验结果,将导致机械见解。通过Pyk2精确定位MCU的磷酸化位点,并通过MCU寡聚化证明功能性Ca2+可渗透通道的形成是独特的。[Ca2+]m增加诱导裂变的分子机制的阐明将显著增加关于线粒体形式和功能之间串扰信号的新见解。最后,调整Pyk2/MCU信号通路治疗人类疾病的前景将是令人鼓舞的,因为线粒体Ca2+稳态的破坏是导致线粒体功能障碍相关临床表型的关键因素,包括心脏病(如HF)、神经退行性疾病、代谢性疾病(糖尿病)和衰老。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Shey-Shing Sheu其他文献
Shey-Shing Sheu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Shey-Shing Sheu', 18)}}的其他基金
Crosstalk Ca2+ Signaling between Ryanodine Receptors Type 1 and 2 in the Pathogenesis of Cardiac Hypertrophy and Heart Failure
心脏肥大和心力衰竭发病机制中 1 型和 2 型 Ryanodine 受体之间的串扰 Ca2 信号传导
- 批准号:
10660636 - 财政年份:2023
- 资助金额:
$ 38.75万 - 项目类别:
Dynamin-Related Protein Drp1 Regulates Cardiac Excitation-Contraction-Bioenergetics Coupling
动力相关蛋白 Drp1 调节心脏兴奋-收缩-生物能耦合
- 批准号:
10063889 - 财政年份:2018
- 资助金额:
$ 38.75万 - 项目类别:
Ca2+ and ROS Crosstalk Signaling in Cardiac Mitochondria
心脏线粒体中的 Ca2 和 ROS 串扰信号传导
- 批准号:
8011076 - 财政年份:2011
- 资助金额:
$ 38.75万 - 项目类别:
Ca2+ and ROS Crosstalk Signaling in Cardiac Mitochondria
心脏线粒体中的 Ca2 和 ROS 串扰信号传导
- 批准号:
8267661 - 财政年份:2011
- 资助金额:
$ 38.75万 - 项目类别:
Ca2+ and ROS Crosstalk Signaling in Cardiac Mitochondria
心脏线粒体中的 Ca2 和 ROS 串扰信号传导
- 批准号:
8431698 - 财政年份:2011
- 资助金额:
$ 38.75万 - 项目类别:
ADP: A Master Regulator for Bioenergetics and Ca2+/ROS Signaling in Heart
ADP:心脏生物能学和 Ca2/ROS 信号传导的主调节器
- 批准号:
8311703 - 财政年份:2011
- 资助金额:
$ 38.75万 - 项目类别:
ADP: A Master Regulator for Bioenergetics and Ca2+/ROS Signaling in Heart
ADP:心脏生物能学和 Ca2/ROS 信号传导的主调节器
- 批准号:
8198299 - 财政年份:2011
- 资助金额:
$ 38.75万 - 项目类别:
Ca2+ and ROS Crosstalk Signaling in Cardiac Mitochondria
心脏线粒体中的 Ca2 和 ROS 串扰信号传导
- 批准号:
10521270 - 财政年份:2010
- 资助金额:
$ 38.75万 - 项目类别:
Ca2+ and ROS Crosstalk Signaling in Cardiac Mitochondria
心脏线粒体中的 Ca2 和 ROS 串扰信号传导
- 批准号:
10064104 - 财政年份:2010
- 资助金额:
$ 38.75万 - 项目类别:
Ca2+ and ROS Crosstalk Signaling in Cardiac Mitochondria
心脏线粒体中的 Ca2 和 ROS 串扰信号传导
- 批准号:
9887277 - 财政年份:2010
- 资助金额:
$ 38.75万 - 项目类别:
相似海外基金
Quantification of Neurovasculature Changes in a Post-Hemorrhagic Stroke Animal-Model
出血性中风后动物模型中神经血管变化的量化
- 批准号:
495434 - 财政年份:2023
- 资助金额:
$ 38.75万 - 项目类别:
Bioactive Injectable Cell Scaffold for Meniscus Injury Repair in a Large Animal Model
用于大型动物模型半月板损伤修复的生物活性可注射细胞支架
- 批准号:
10586596 - 财政年份:2023
- 资助金额:
$ 38.75万 - 项目类别:
A Comparison of Treatment Strategies for Recovery of Swallow and Swallow-Respiratory Coupling Following a Prolonged Liquid Diet in a Young Animal Model
幼年动物模型中长期流质饮食后吞咽恢复和吞咽呼吸耦合治疗策略的比较
- 批准号:
10590479 - 财政年份:2023
- 资助金额:
$ 38.75万 - 项目类别:
Small animal model for evaluating the impacts of cleft lip repairing scar on craniofacial growth and development
评价唇裂修复疤痕对颅面生长发育影响的小动物模型
- 批准号:
10642519 - 财政年份:2023
- 资助金额:
$ 38.75万 - 项目类别:
Diurnal grass rats as a novel animal model of seasonal affective disorder
昼夜草鼠作为季节性情感障碍的新型动物模型
- 批准号:
23K06011 - 财政年份:2023
- 资助金额:
$ 38.75万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Longitudinal Ocular Changes in Naturally Occurring Glaucoma Animal Model
自然发生的青光眼动物模型的纵向眼部变化
- 批准号:
10682117 - 财政年份:2023
- 资助金额:
$ 38.75万 - 项目类别:
A whole animal model for investigation of ingested nanoplastic mixtures and effects on genomic integrity and health
用于研究摄入的纳米塑料混合物及其对基因组完整性和健康影响的整体动物模型
- 批准号:
10708517 - 财政年份:2023
- 资助金额:
$ 38.75万 - 项目类别:
A Novel Large Animal Model for Studying the Developmental Potential and Function of LGR5 Stem Cells in Vivo and in Vitro
用于研究 LGR5 干细胞体内外发育潜力和功能的新型大型动物模型
- 批准号:
10575566 - 财政年份:2023
- 资助金额:
$ 38.75万 - 项目类别:
Elucidating the pathogenesis of a novel animal model mimicking chronic entrapment neuropathy
阐明模拟慢性卡压性神经病的新型动物模型的发病机制
- 批准号:
23K15696 - 财政年份:2023
- 资助金额:
$ 38.75万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
The effect of anti-oxidant on swallowing function in an animal model of dysphagia
抗氧化剂对吞咽困难动物模型吞咽功能的影响
- 批准号:
23K15867 - 财政年份:2023
- 资助金额:
$ 38.75万 - 项目类别:
Grant-in-Aid for Early-Career Scientists














{{item.name}}会员




