Cellular and Developmental Biology of Coxiella burnetii
伯内氏柯克斯体的细胞和发育生物学
基本信息
- 批准号:9161549
- 负责人:
- 金额:$ 72.55万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:
- 资助国家:美国
- 起止时间:至
- 项目状态:未结题
- 来源:
- 关键词:AppearanceArginineBacteriaBindingBiochemicalBiogenesisBiologicalBiologyCardiolipinsCell WallCell physiologyCellsCellular biologyCerealsClathrin-Coated VesiclesComplexCoxiellaCoxiella burnetiiCryoelectron MicroscopyCytosolDefectDevelopmentDevelopmental BiologyEmployee StrikesEpithelial CellsEscherichia coliEthanolaminesEventExhibitsGene Expression ProfileGene SilencingGenerationsGenesGenetic DeterminismGoalsGrowthHomologous GeneHumanIndividualInfectionLaboratoriesLactamsLegionella pneumophilaLipidsMass Spectrum AnalysisMembraneMembrane FusionMetabolismMethodsMolecularMolecular BiologyNatural HistoryNonesterified Fatty AcidsNutrientOrganismOxidative StressPathogenesisPathway interactionsPeptide Signal SequencesPeptidesPeptidoglycanPeptidyltransferasePhagolysosomePhagosomesPhasePhosphatidylethanolaminePhosphatidylglycerolsPhospholipases APlasmalogensProcessPropertyProtein BiosynthesisProteinsProteomeQ FeverRegulationRelative (related person)ResistanceRoleSystemTechnologyThickThin Layer ChromatographyUp-RegulationVacuoleVariantVesicleVirulenceadapter proteinbasebiological adaptation to stresscell envelopecohortcrosslinkextracellulargenetic manipulationgenetic technologyinsightmacrophagemutantneurotensin mimic 2pathogenperiplasmphysical propertyprotein transportresidencetooltraffickinguptake
项目摘要
Central to Q fever pathogenesis is replication of the causative agent, Coxiella burnetii, in a large and spacious phagolysosome-like parasitophorous vacuole (PV). Recruitment of membrane during PV biogenesis is a complex process modulated by both host and bacterial factors. Coxiella encodes a specialized Dot/Icm type IVB secretion system (T4BSS) that secretes proteins with effector functions directly into the host cell cytosol. Effector proteins are predicted to modulate an array of host cell processes, such as vesicular trafficking, that promote pathogen growth. Coxiella Dot/Icm function was initially studied using Legionella pneumophila as surrogate host. However, by using new gene inactivation technologies developed in our laboratory, we have recently confirmed that a functional T4BSS is required for productive infection of human macrophages by Coxiella. Furthermore, we have verified Dot/Icm-dependent secretion by Coxiella of over 30 proteins. Coxiella must co-opt vesicular trafficking pathways to promote PV development. We are currently elucidating the activities of five effector proteins that traffic to the PV membrane termed CvpA (Coxiella vacuolar protein A), CvpB, CvpC, CvpD, and CvpE that are speculated to modulate membrane fusion events. Mutants in individual cvp genes all display significant defects in replication and PV development. Particular insight into the function of CvpA has been grained by showing the protein subverts clathrin-coated vesicle trafficking.
Regulation of the Coxiella T4BSS is poorly defined. IcmS is a predicted cytoplasmic adapter protein that facilitates translocation of certain T4BSS effectors by binding an internal signal sequence(s). We examined the function of Coxiella IcmS by generating an icmS deletion mutant. Coxiella ΔicmS grows normally in axenic media while having a pronounced growth defect in host cells that is rescued with a single chromosomal copy of icmS. Optimal secretion of individual substrates is either IcmS-dependent or independent. Additionally, a subset of substrates display hyper-secretion in Coxiella ΔicmS, suggesting IcmS may also suppress secretion of some Dot/Icm substrates. Thus, regulation by IcmS appears complex with the growth defect of Coxiella ΔicmS potentially explained by both deficient and aberrant secretion of effector proteins.
A hallmark of Coxiella is a biphasic developmental cycle that generates biologically, ultrastructurally, and compositionally distinct large cell variant (LCV) and small cell variant (SCV) forms. LCV are replicating, exponential phase forms while SCVs are non-replicating, stationary phase forms. The SCV has several properties, such as a condensed nucleoid and an unusual cell envelope, suspected of conferring enhanced environmental stability. Although the developmental cycle is considered fundamental to Coxiella virulence, the molecular biology of this process is poorly understood. Recently, we discovered that Coxiella developmental transitions and viability in the synthetic medium ACCM-2 mimic host cell-cultivated organisms. Axenic cultivation of Coxiella in ACCM-2, along with new methods for genetic manipulation, now provides powerful tools to investigate the molecular basis and biological relevance of Coxiella biphasic development.
Ultrastructural studies show marked differences in the cell envelope between cell variants, but little is known about biochemical differences between SCV and LCV that confer their distinct biological and physical properties. We analyzed the lipid composition of Coxiella after 4 (LCV), 7 (intermediate forms) and 14 (SCV) days of growth in synthetic medium, using thin layer chromatography and mass spectrometry. Similar to Escherichia coli, Coxiella contains cardiolipin, phosphatidylglycerol (PG), and phosphatidylethanolamine (PE), with some PE in an unusual plasmalogen form. PE and PG are present in lower quantities in the SCV relative to the LCV. However, three additional major lipid species are present in higher quantities in the SCV: lyso-phosphatidylethanolamine, a breakdown product of PE; glycerophospho-N-acyl-ethanolamine, a lipid previously not found in bacteria; and free fatty acids, which are normally toxic for bacteria. Mutational analysis indicates that these three lipids are generated via the activity of a Coxiella outer membrane phospholipase A homolog (CBU0489). A cbu0489 mutant exhibits a significant growth defect in THP-1 macrophage-like cells, suggesting developmentally regulated lipid synthesis is required for optimal intracellular growth and could contribute to the distinct properties of LCV and SCV.
To further identify genetic determinants of LCV to SCV transition, we profiled the Coxiella transcriptome by microarray at 3 (early LCV), 5 (late LCV), 7 (intermediate forms), 14 (early SCV) and 21 (late SCV) days post-infection (dpi) of Vero epithelial cells. Transcriptional signatures of SCV are up-regulation of genes involved in oxidative stress responses, arginine metabolism, and cell wall remodeling. Genes down-regulated in SCV are primarily associated with intermediary metabolism. A striking transcriptional signature of the SCV is induction (10-fold) of five genes encoding predicted L,D transpeptidases that catalyze β-lactam resistant 3-3 peptide crosslinks typically found in the peptidoglycan (PG) of stationary phase bacteria. Cryo-electron microscopy reveals an unusually thick and dense periplasmic layer specific to SCV, suggestive of PG, whereas the periplasm and inner and outer membranes of LCV exhibits a more typical gram-negative appearance. Muropeptide analysis of Coxiella PG shows an increasing percentage of 3-3 cross-links as LCV transition to SCV raising the possibility that the Coxiella L,D transpeptidase homologs up-regulated by microarray may be important in cross-linking the PG of SCV. Collectively, these results indicate the SCV produces a unique transcriptome with a major subset of these genes directed towards remodeling a PG layer that may contribute to Coxiellas environmental resistance.
Q热发病机制的核心是病原体伯纳克希菌在一个大而宽敞的吞噬体样寄生液泡(PV)中复制。PV生物发生过程中膜的募集是一个由宿主和细菌因素共同调节的复杂过程。Coxiella编码一种特殊的Dot/Icm型IVB分泌系统(T4BSS),该系统可将具有效应功能的蛋白质直接分泌到宿主细胞质中。据预测,效应蛋白可以调节一系列宿主细胞过程,如促进病原体生长的囊泡运输。以嗜肺军团菌为代宿主,初步研究了Coxiella Dot/Icm功能。然而,通过使用我们实验室开发的新的基因失活技术,我们最近证实了功能性T4BSS是Coxiella对人巨噬细胞产生性感染所必需的。此外,我们还证实了Coxiella对Dot/ icm依赖性分泌超过30种蛋白质。Coxiella必须采用囊泡运输途径来促进PV的发展。我们目前正在阐明转运至PV膜的五种效应蛋白的活性,即CvpA (Coxiella vacuolar protein A)、CvpB、CvpC、CvpD和CvpE,它们被推测可以调节膜融合事件。单个cvp基因的突变体在复制和PV发育中都表现出明显的缺陷。通过显示蛋白质破坏网格蛋白包被的囊泡运输,对CvpA功能的特别了解已经深入。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
robert a heinzen其他文献
robert a heinzen的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('robert a heinzen', 18)}}的其他基金
Cellular and Developmental Biology of Coxiella burnetii
伯内氏柯克斯体的细胞和发育生物学
- 批准号:
8336171 - 财政年份:
- 资助金额:
$ 72.55万 - 项目类别:
Cellular and Developmental Biology of Coxiella burnetii
伯内氏柯克斯体的细胞和发育生物学
- 批准号:
10014100 - 财政年份:
- 资助金额:
$ 72.55万 - 项目类别:
Cellular and Developmental Biology of Coxiella burnetii
伯内氏柯克斯体的细胞和发育生物学
- 批准号:
8946368 - 财政年份:
- 资助金额:
$ 72.55万 - 项目类别:
Cellular and Developmental Biology of Coxiella burnetii
伯内氏柯克斯体的细胞和发育生物学
- 批准号:
10927789 - 财政年份:
- 资助金额:
$ 72.55万 - 项目类别:
相似国自然基金
围绕GLP1-Arginine-AGE/RAGE轴构建探针组学方法探索大柴胡汤异病同治的效应机制
- 批准号:81973577
- 批准年份:2019
- 资助金额:55.0 万元
- 项目类别:面上项目
相似海外基金
Targeting protein arginine methylation in the 9p21.3 loss tumor microenvironment
9p21.3 缺失肿瘤微环境中的靶向蛋白精氨酸甲基化
- 批准号:
489995 - 财政年份:2023
- 资助金额:
$ 72.55万 - 项目类别:
Operating Grants
The role of protein arginine methyl transferase PRMT1 on myelin development
蛋白精氨酸甲基转移酶PRMT1对髓磷脂发育的作用
- 批准号:
23K14287 - 财政年份:2023
- 资助金额:
$ 72.55万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Effects of Arginine Depletion Combined with Platinum-Taxane Chemotherapy in Aggressive Variant Prostate Cancers (AVPC)
精氨酸消耗联合铂类紫杉烷化疗对侵袭性变异前列腺癌 (AVPC) 的影响
- 批准号:
10715329 - 财政年份:2023
- 资助金额:
$ 72.55万 - 项目类别:
Normalizing arginine metabolism with sepiaptein for immunostimulatory-shift ofHER2+ breast cancer
使用 Sepiaptein 使精氨酸代谢正常化以实现 HER2 乳腺癌的免疫刺激转变
- 批准号:
10776256 - 财政年份:2023
- 资助金额:
$ 72.55万 - 项目类别:
Understanding resistance mechanisms to protein arginine methyltransransferase Inhibitors in Lymphoma
了解淋巴瘤对蛋白精氨酸甲基转移酶抑制剂的耐药机制
- 批准号:
10668754 - 财政年份:2023
- 资助金额:
$ 72.55万 - 项目类别:
Targeting protein arginine methylation in the 9p21.3 loss tumor microenvironment
9p21.3 缺失肿瘤微环境中的靶向蛋白精氨酸甲基化
- 批准号:
498862 - 财政年份:2023
- 资助金额:
$ 72.55万 - 项目类别:
Operating Grants
Physiological function of arginine signaling:macropinocytosisand tumor immune evasion
精氨酸信号的生理功能:巨胞饮作用与肿瘤免疫逃避
- 批准号:
23H03317 - 财政年份:2023
- 资助金额:
$ 72.55万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Regulation of androgen receptor signaling in prostate cancer by protein arginine methylation
通过蛋白质精氨酸甲基化调节前列腺癌中的雄激素受体信号传导
- 批准号:
10584689 - 财政年份:2023
- 资助金额:
$ 72.55万 - 项目类别:
Arginine methylation of the RNA helicase DDX5 in the regulation of RNA/DNA hybrids during the DNA damage response.
RNA 解旋酶 DDX5 的精氨酸甲基化在 DNA 损伤反应期间调节 RNA/DNA 杂交体中的作用。
- 批准号:
487619 - 财政年份:2023
- 资助金额:
$ 72.55万 - 项目类别:
Operating Grants
Regulation of and Target Recognition by Protein Arginine Methyltransferase 1 (PRMT1)
蛋白质精氨酸甲基转移酶 1 (PRMT1) 的调节和目标识别
- 批准号:
10653465 - 财政年份:2023
- 资助金额:
$ 72.55万 - 项目类别:














{{item.name}}会员




