Biophysical interactions of PIP2 and calmodulin with KCNQ (Kv7) K+ ion channels
PIP2 和钙调蛋白与 KCNQ (Kv7) K 离子通道的生物物理相互作用
基本信息
- 批准号:8838438
- 负责人:
- 金额:$ 3.07万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-03-30 至 2018-03-29
- 项目状态:已结题
- 来源:
- 关键词:AddressAffinityArrhythmiaBasic Amino AcidsBindingBinding SitesBiochemicalBiological AssayCalciumCalmodulinCalmodulin 1CalorimetryCell membraneChargeCompetitive BindingComplexCytoplasmic ProteinDataDiseaseDrug TargetingEnvironmentEpilepsyGoalsHealth SciencesInheritedIon ChannelKnowledgeLabelLeadLocationMembrane LipidsMembrane PotentialsMembrane ProteinsMethodsMolecularMorbidity - disease rateMuscarinic Acetylcholine ReceptorMutationNeuronsPeptidesPhosphatidylinositol 4,5-DiphosphatePhosphatidylinositolsPhysiological ProcessesPotassium ChannelProtein FragmentPublishingRegulationResearchResearch PersonnelResearch TrainingSecond Messenger SystemsSiteSolubilitySystemTexasThermodynamicsTitrationsUniversitiesWorkanalytical ultracentrifugationbasebiophysical techniquesdeafnessinnovationinorganic phosphateinsightnovel strategiesnovel therapeuticspreventpublic health relevanceresearch studyresponsesecond messengersensorskillsstoichiometry
项目摘要
DESCRIPTION (provided by applicant): Biophysical interactions of PIP2 and calmodulin with KCNQ (Kv7) K ion channels + KCNQ potassium channels control cellular excitability, and inherited mutations in the proximal half of the C- terminus of these membrane proteins can result in cardiac arrhythmia, deafness and epilepsy. The signature "M-current" produced by KCNQ channels was first observed in sympathetic neurons, and can be inhibited by stimulation of Gq/11 muscarinic receptors. Phosphatidylinositol 4, 5-bisphosphate (PIP2) and calmodulin (CaM) are Gq/11 second messenger molecules suggested to modulate KCNQ channel function by directly binding the proximal C-terminus of KCNQ channels. As a result, many inherited mutations may interfere with KCNQ channel function by disrupting PIP2 and CaM binding to the channels. It is well established that CaM can bind both the A and B helices of the C-terminus of KCNQ channels, and previous work indicates that CaM may be constitutively bound to the channels. The precise locations of the PIP2 binding sites are less clear, but are suggested to lie on two distinct domains enriched with basic amino acids that also reside on the KCNQ proximal C-terminus. The mechanisms for how PIP2 and CaM modulate KCNQ channels, and their interactions between each other, are as yet uncertain. However, the close proximity of these binding sites to each other suggests that these molecules may engage in a rich crosstalk dynamic to modulate KCNQ channel function. The overarching hypothesis is that the complex interactions between PIP2 and CaM guide the function of KCNQ channels. This study presents a novel approach to understand the mechanisms controlling the modulation of KCNQ channels. Cutting edge biophysical methods will be used to determine the biochemical binding affinities of PIP2 and CaM for KCNQ channels, and their precise sites of action. In order to gain a comprehensive understanding of the binding affinities, the experiments in this study employ purified protein fragments corresponding to the proximal half of the KCNQ C-terminus, in addition to short peptides corresponding to the proposed binding domains. Our preliminary data show stunning differences in the binding affinities and thermodynamic parameters of calmodulin for KCNQ channels. Also compelling is that these preliminary results hint at drastic differences of PIP2 affinity for each of the proposed domains on each KCNQ channel subtype. The completion of this project is expected to provide a significant impact on many ion channel diseases, since the molecular mechanisms for controlling KCNQ channels appear common to many other ion channels. As the applicant continues to progress in her research training in the supportive environment at The University of Texas Health Science Center, we will present more results that should help define the structural and molecular mechanism of PIP2 and CaM actions on KCNQ channels.
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Crystal Rae Archer其他文献
Crystal Rae Archer的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Crystal Rae Archer', 18)}}的其他基金
Structural consequences of PKC-dependent phosphorylation of Kv7.2
Kv7.2 PKC 依赖性磷酸化的结构后果
- 批准号:
10429142 - 财政年份:2022
- 资助金额:
$ 3.07万 - 项目类别:
Structural consequences of PKC-dependent phosphorylation of Kv7.2
Kv7.2 PKC 依赖性磷酸化的结构后果
- 批准号:
10609077 - 财政年份:2022
- 资助金额:
$ 3.07万 - 项目类别:
相似海外基金
Construction of affinity sensors using high-speed oscillation of nanomaterials
利用纳米材料高速振荡构建亲和传感器
- 批准号:
23H01982 - 财政年份:2023
- 资助金额:
$ 3.07万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Affinity evaluation for development of polymer nanocomposites with high thermal conductivity and interfacial molecular design
高导热率聚合物纳米复合材料开发和界面分子设计的亲和力评估
- 批准号:
23KJ0116 - 财政年份:2023
- 资助金额:
$ 3.07万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Platform for the High Throughput Generation and Validation of Affinity Reagents
用于高通量生成和亲和试剂验证的平台
- 批准号:
10598276 - 财政年份:2023
- 资助金额:
$ 3.07万 - 项目类别:
Development of High-Affinity and Selective Ligands as a Pharmacological Tool for the Dopamine D4 Receptor (D4R) Subtype Variants
开发高亲和力和选择性配体作为多巴胺 D4 受体 (D4R) 亚型变体的药理学工具
- 批准号:
10682794 - 财政年份:2023
- 资助金额:
$ 3.07万 - 项目类别:
Collaborative Research: DESIGN: Co-creation of affinity groups to facilitate diverse & inclusive ornithological societies
合作研究:设计:共同创建亲和团体以促进多元化
- 批准号:
2233343 - 财政年份:2023
- 资助金额:
$ 3.07万 - 项目类别:
Standard Grant
Collaborative Research: DESIGN: Co-creation of affinity groups to facilitate diverse & inclusive ornithological societies
合作研究:设计:共同创建亲和团体以促进多元化
- 批准号:
2233342 - 财政年份:2023
- 资助金额:
$ 3.07万 - 项目类别:
Standard Grant
Molecular mechanisms underlying high-affinity and isotype switched antibody responses
高亲和力和同种型转换抗体反应的分子机制
- 批准号:
479363 - 财政年份:2023
- 资助金额:
$ 3.07万 - 项目类别:
Operating Grants
Deconstructed T cell antigen recognition: Separation of affinity from bond lifetime
解构 T 细胞抗原识别:亲和力与键寿命的分离
- 批准号:
10681989 - 财政年份:2023
- 资助金额:
$ 3.07万 - 项目类别:
CAREER: Engineered Affinity-Based Biomaterials for Harnessing the Stem Cell Secretome
职业:基于亲和力的工程生物材料用于利用干细胞分泌组
- 批准号:
2237240 - 财政年份:2023
- 资助金额:
$ 3.07万 - 项目类别:
Continuing Grant
ADVANCE Partnership: Leveraging Intersectionality and Engineering Affinity groups in Industrial Engineering and Operations Research (LINEAGE)
ADVANCE 合作伙伴关系:利用工业工程和运筹学 (LINEAGE) 领域的交叉性和工程亲和力团体
- 批准号:
2305592 - 财政年份:2023
- 资助金额:
$ 3.07万 - 项目类别:
Continuing Grant














{{item.name}}会员




