Role of the Unfolded Protein Response in Beta Cell
未折叠蛋白反应在 Beta 细胞中的作用
基本信息
- 批准号:8730113
- 负责人:
- 金额:$ 54.4万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:1998
- 资助国家:美国
- 起止时间:1998-01-01 至 2017-08-31
- 项目状态:已结题
- 来源:
- 关键词:AntioxidantsApoptosisAttenuatedBeta CellBiologicalBiological AssayBlood GlucoseCCAAT-Enhancer-Binding ProteinsCarbamazepineCaspaseCell LineCell physiologyCellsChemicalsChronicCyclosporineDataDevelopmentDiabetes MellitusDietEndoplasmic ReticulumEnsureEnvironmentExtravasationFailureGene ExpressionGenesGeneticGlucoseGrantHomeostasisHomologous ProteinHumanImageInositolInsulinInsulin ResistanceIntegral Membrane ProteinInterventionIslet CellJNK-activating protein kinaseLeadMammalian CellMediatingMembraneMembrane PotentialsMessenger RNAMethodsMitochondriaMolecularMolecular ChaperonesMusMutationN-terminalNon-Insulin-Dependent Diabetes MellitusObesityOpen Reading FramesOxidative StressPancreasPathway interactionsPatternPharmacologic SubstancePhosphorylationPhosphotransferasesProductionProinsulinProtein BiosynthesisProteinsRNA SplicingReactive Oxygen SpeciesRibosomal ProteinsRibosomesRoleSignal Recognition ParticleSignal TransductionSignal Transduction PathwaySirolimusSorting - Cell MovementStimulusStressSumTestingTissuesTransactivationTranslationsactivating transcription factorattenuationbasecell dedifferentiationcyclophilin Ddiabeticendoplasmic reticulum stressfeedingglucagon-like peptide 1human diseaseimprovedimproved functioningin vivo Modelinsightinsulin secretionisletmeetingsmitochondrial membranemouse modelnoveloverexpressionpressurepreventprotein degradationprotein foldingprotein misfoldingresponsesensortraffickingtranscription factortranslation factoruptake
项目摘要
Type 2 diabetes is associated with insulin resistance and disturbances in pancreatic p cell function that result
in inadequate glucose-stimulated insulin secretion (GSIS). However, the mechanisms that cause p cell failure
are largely unknown. Recent studies implicate protein misfolding in the ER as a potential cause for p cell
failure in diabetic humans. Upon accumulation of unfolded proteins in the lumen of the ER, PERK, IREIa,
and ATF6a are activated to increase the capacity of the ER to meet the demand for increased protein folding
and to increase the protein degradative machinery to eliminate misfolded proteins. In addition, protein
synthesis is transiently attenuated through PERK-mediated phosphorylation of elF2a. Over the past cycle we
demonstrated: 1) elF2a phosphorylation is required to limit protein synthesis and oxidative stress to maintain
P cell function; 2) the ER co-chaperone pSS""*^ is required to limit reactive oxygen species (ROS) and
preserve p cell function. Antioxidant treatment significantly restores p cell function in pSS'^*^''' mice; and 3)
IRE1a-mediated splicing of Xbp1 mRNA induces co-transiational translocation at the ER to promote
proinsulin production and represses oxidative stress. The sum of our data lead us to propose that tight
control of protein synthesis in the p cell is required to ensure the ER protein folding demand does not exceed
the capacity. This is especially important for the p cell as it is exposed to periodic postprandial increases in
protein synthesis. In our Specific Aims, we will test three hypotheses by answering the following questions:
Aim 1: Translational attenuation through elF2a phosphorylation preserves p cell function by limiting protein
misfolding. We propose that excessive proinsulin synthesis causes proinsulin misfolding, ER Ca^* release
and uptake into mitochondria, and mitochondrial-generated ROS. ROS then feed forward to further disrupt
protein folding in the ER. Any stimuli that pressure p cells to exceed their capacity for proinsulin folding will
succumb to this vicious cycle. To test this notion, we will answer:
a. Does excessive,.(Proinsulin synthesis (such as elF2aAA) cause p cell dedifferentiation and can;
antioxidants protect p cells under these conditions? We will sort GFP+ elF2aAA p cells from mice (+/- BHAsupplemented
diet) and characterize their gene expression and D N A replication/damage patterns.
b. Can reduced protein synthesis protect p cells in elF2ccAA mice? We will test whether decreased protein
synthesis through haploinsufficiency in the ribosomal protein RPL24 gene can protect elF2aAA p cells.
c. How does elF2a phosphorylation change 5' open reading frame (ORF) usage in mRNAs? Ribosomal
protection assays will be performed to elucidate how elF2a phosphorylation alters ORF usage in response
to glucose stimulation in wildtype and elF2aAA p cells.
d. Can pharmaceutical interventions protect elF2aAA p cells that produce excessive proinsulin? We will test
chemical chaperones, GLP-1, cyclosporin A, rapamycin/carbamazepine, etc. as a proof-of-concept that
elF2aAA p cell failure is due to protein misfolding and that agents known to improve ER protein folding will
improve function of p cells pressured by proinsulin synthesis.
Aim 2: Proinsulin misfolding in the ER causes Ca^* leak to mitochondria, leading to oxidative stress.
a. Does pSS""*^ deficiency cause proinsulin misfolding in the ER to disrupt mitochondrial function and
generate oxidative stress? Proinsulin synthesis, folding and trafficking, Ca^* imaging, mitochondrial
membrane potential and ROS production in islets as well as in murine immortalized p cell lines from p58"^'^*^*
and p58"''^'^' mice +/- glucose stimulation will be analyzed.
b. Can SERCA overexpression improve insulin secretion and p cell function in p58"''^"^" cells and islets?
c. Can cyclophilin D knockdown or deletion (Ppif^') prevent p cell failure in p58"''^''' cells or mice,
respectively?
d. Can interventions in Id above improve function of pSS"''^'''"islets?
For 2b-d, analyses will include methods described in 2a.
Aim 3: IREIa and ATF6a provide overlapping functions to promote SRP-dependent ribosome and mRNA
recruitment to the ER membrane during glucose stimulation and increase ER protein-folding capacity.
a. How does Irel a change membrane association of mRNAs?
b. Can antioxidants, cyclosporine A, or chemical chaperones improve ire1d'' p cell function and change
mRNA cellular localization?
c. Is Atfda and/or Atfdp deletion detrimental to p cells upon I r e l d ' ' deletion, HFD feeding, or Akita mutation?
Type 2 diabetes is associated with insulin resistance and disturbances in pancreatic p cell function that result
in inadequate glucose-stimulated insulin secretion (GSIS). However, the mechanisms that cause p cell failure
are largely unknown. Recent studies implicate protein misfolding in the ER as a potential cause for p cell
failure in diabetic humans. Upon accumulation of unfolded proteins in the lumen of the ER, PERK, IREIa,
and ATF6a are activated to increase the capacity of the ER to meet the demand for increased protein folding
and to increase the protein degradative machinery to eliminate misfolded proteins. In addition, protein
synthesis is transiently attenuated through PERK-mediated phosphorylation of elF2a. Over the past cycle we
demonstrated: 1) elF2a phosphorylation is required to limit protein synthesis and oxidative stress to maintain
P cell function; 2) the ER co-chaperone pSS""*^ is required to limit reactive oxygen species (ROS) and
preserve p cell function. Antioxidant treatment significantly restores p cell function in pSS'^*^''' mice; and 3)
IRE1a-mediated splicing of Xbp1 mRNA induces co-transiational translocation at the ER to promote
proinsulin production and represses oxidative stress. The sum of our data lead us to propose that tight
control of protein synthesis in the p cell is required to ensure the ER protein folding demand does not exceed
the capacity. This is especially important for the p cell as it is exposed to periodic postprandial increases in
protein synthesis. In our Specific Aims, we will test three hypotheses by answering the following questions:
Aim 1: Translational attenuation through elF2a phosphorylation preserves p cell function by limiting protein
misfolding. We propose that excessive proinsulin synthesis causes proinsulin misfolding, ER Ca^* release
and uptake into mitochondria, and mitochondrial-generated ROS. ROS then feed forward to further disrupt
protein folding in the ER. Any stimuli that pressure p cells to exceed their capacity for proinsulin folding will
succumb to this vicious cycle. To test this notion, we will answer:
a. Does excessive,.(Proinsulin synthesis (such as elF2aAA) cause p cell dedifferentiation and can;
antioxidants protect p cells under these conditions? We will sort GFP+ elF2aAA p cells from mice (+/- BHAsupplemented
diet) and characterize their gene expression and D N A replication/damage patterns.
b. Can reduced protein synthesis protect p cells in elF2ccAA mice? We will test whether decreased protein
synthesis through haploinsufficiency in the ribosomal protein RPL24 gene can protect elF2aAA p cells.
c. How does elF2a phosphorylation change 5' open reading frame (ORF) usage in mRNAs? Ribosomal
protection assays will be performed to elucidate how elF2a phosphorylation alters ORF usage in response
to glucose stimulation in wildtype and elF2aAA p cells.
d. Can pharmaceutical interventions protect elF2aAA p cells that produce excessive proinsulin? We will test
chemical chaperones, GLP-1, cyclosporin A, rapamycin/carbamazepine, etc. as a proof-of-concept that
elF2aAA p cell failure is due to protein misfolding and that agents known to improve ER protein folding will
improve function of p cells pressured by proinsulin synthesis.
Aim 2: Proinsulin misfolding in the ER causes Ca^* leak to mitochondria, leading to oxidative stress.
a. Does pSS""*^ deficiency cause proinsulin misfolding in the ER to disrupt mitochondrial function and
generate oxidative stress? Proinsulin synthesis, folding and trafficking, Ca^* imaging, mitochondrial
membrane potential and ROS production in islets as well as in murine immortalized p cell lines from p58"^'^*^*
and p58"''^'^' mice +/- glucose stimulation will be analyzed.
b. Can SERCA overexpression improve insulin secretion and p cell function in p58"''^"^" cells and islets?
c. Can cyclophilin D knockdown or deletion (Ppif^') prevent p cell failure in p58"''^''' cells or mice,
respectively?
d. Can interventions in Id above improve function of pSS"''^'''"islets?
For 2b-d, analyses will include methods described in 2a.
Aim 3: IREIa and ATF6a provide overlapping functions to promote SRP-dependent ribosome and mRNA
recruitment to the ER membrane during glucose stimulation and increase ER protein-folding capacity.
a. How does Irel a change membrane association of mRNAs?
b. Can antioxidants, cyclosporine A, or chemical chaperones improve ire1d'' p cell function and change
mRNA cellular localization?
c. Is Atfda and/or Atfdp deletion detrimental to p cells upon I r e l d ' ' deletion, HFD feeding, or Akita mutation?
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
RANDAL J. KAUFMAN其他文献
RANDAL J. KAUFMAN的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('RANDAL J. KAUFMAN', 18)}}的其他基金
Acquisition of Zeiss LSM980 with Airyscan 2, a super-resolution point scanning confocal microscope
购买 Zeiss LSM980 和 Airyscan 2(超分辨率点扫描共焦显微镜)
- 批准号:
10632893 - 财政年份:2023
- 资助金额:
$ 54.4万 - 项目类别:
Overcoming FVIII protein misfolding and cell toxicity
克服 FVIII 蛋白错误折叠和细胞毒性
- 批准号:
10560541 - 财政年份:2022
- 资助金额:
$ 54.4万 - 项目类别:
Overcoming FVIII protein misfolding and cell toxicity
克服 FVIII 蛋白错误折叠和细胞毒性
- 批准号:
10333189 - 财政年份:2022
- 资助金额:
$ 54.4万 - 项目类别:
Mechanism of ER protein misfolding-induced mitochondrial dysfunction
ER蛋白错误折叠导致线粒体功能障碍的机制
- 批准号:
9448713 - 财政年份:2017
- 资助金额:
$ 54.4万 - 项目类别:
Mechanism of ER Protein Misfolding-Induced Mitochondrial Dysfunction
ER蛋白错误折叠引起线粒体功能障碍的机制
- 批准号:
9750668 - 财政年份:2017
- 资助金额:
$ 54.4万 - 项目类别:
ER stress and UPR in non-alcoholic steatohepatitis and hepatocellular carcinoma
非酒精性脂肪性肝炎和肝细胞癌中的 ER 应激和 UPR
- 批准号:
9914228 - 财政年份:2016
- 资助金额:
$ 54.4万 - 项目类别:
ER stress and UPR in non-alcoholic steatohepatitis and hepatocellular carcinoma
非酒精性脂肪性肝炎和肝细胞癌中的 ER 应激和 UPR
- 批准号:
9113989 - 财政年份:2016
- 资助金额:
$ 54.4万 - 项目类别:
ER stress and UPR in non-alcoholic steatohepatitis and hepatocellular carcinoma
非酒精性脂肪性肝炎和肝细胞癌中的 ER 应激和 UPR
- 批准号:
9267948 - 财政年份:2016
- 资助金额:
$ 54.4万 - 项目类别:
Homeostatic role of IRE1a-XBP1-PDI1 in hepatic lipid metabolism
IRE1a-XBP1-PDI1 在肝脂质代谢中的稳态作用
- 批准号:
8888815 - 财政年份:2015
- 资助金额:
$ 54.4万 - 项目类别:
eIF2a phosphorylation as a novel druggable target in CRPC
eIF2a 磷酸化作为 CRPC 的新型药物靶点
- 批准号:
8805370 - 财政年份:2015
- 资助金额:
$ 54.4万 - 项目类别:
相似国自然基金
Epac1/2通过蛋白酶体调控中性粒细胞NETosis和Apoptosis在急性肺损伤中的作用研究
- 批准号:LBY21H010001
- 批准年份:2020
- 资助金额:0.0 万元
- 项目类别:省市级项目
基于Apoptosis/Ferroptosis双重激活效应的天然产物AlbiziabiosideA的抗肿瘤作用机制研究及其结构改造
- 批准号:81703335
- 批准年份:2017
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
双肝移植后Apoptosis和pyroptosis在移植物萎缩差异中的作用和供受者免疫微环境变化研究
- 批准号:81670594
- 批准年份:2016
- 资助金额:58.0 万元
- 项目类别:面上项目
Serp-2 调控apoptosis和pyroptosis 对肝脏缺血再灌注损伤的保护作用研究
- 批准号:81470791
- 批准年份:2014
- 资助金额:73.0 万元
- 项目类别:面上项目
Apoptosis signal-regulating kinase 1是七氟烷抑制小胶质细胞活化的关键分子靶点?
- 批准号:81301123
- 批准年份:2013
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
APO-miR(multi-targeting apoptosis-regulatory miRNA)在前列腺癌中的表达和作用
- 批准号:81101529
- 批准年份:2011
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
放疗与细胞程序性死亡(APOPTOSIS)相关性及其应用研究
- 批准号:39500043
- 批准年份:1995
- 资助金额:9.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Development of an apoptosis biosensor for monitoring of breast cancer
开发用于监测乳腺癌的细胞凋亡生物传感器
- 批准号:
10719415 - 财政年份:2023
- 资助金额:
$ 54.4万 - 项目类别:
Milk fat globule-EGF factor 8 and hepatocyte apoptosis-induced liver wound healing response
乳脂肪球-EGF因子8与肝细胞凋亡诱导的肝脏创面愈合反应
- 批准号:
10585802 - 财政年份:2023
- 资助金额:
$ 54.4万 - 项目类别:
Interrogating the Fgl2-FcγRIIB axis on CD8+ T cells: A novel mechanism mediating apoptosis of tumor-specific memory CD8+ T cells
询问 CD8 T 细胞上的 Fgl2-FcγRIIB 轴:介导肿瘤特异性记忆 CD8 T 细胞凋亡的新机制
- 批准号:
10605856 - 财政年份:2023
- 资助金额:
$ 54.4万 - 项目类别:
Mechanistic analysis of apoptosis induction by HDAC inhibitors in head and neck cancer
HDAC抑制剂诱导头颈癌凋亡的机制分析
- 批准号:
23K15866 - 财政年份:2023
- 资助金额:
$ 54.4万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Novel targeted therapy for FGFR inhibitor-resistant urothelial cancer and apoptosis based therapy for urothelial cancer
FGFR抑制剂耐药性尿路上皮癌的新型靶向治疗和基于细胞凋亡的尿路上皮癌治疗
- 批准号:
23K08773 - 财政年份:2023
- 资助金额:
$ 54.4万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Interrogating the Fgl2-FcgRIIB axis: A novel mechanism mediating apoptosis of tumor-specific memory CD8+ T cells
探究 Fgl2-FcgRIIB 轴:介导肿瘤特异性记忆 CD8 T 细胞凋亡的新机制
- 批准号:
10743485 - 财政年份:2023
- 资助金额:
$ 54.4万 - 项目类别:
Investigating the role of apoptosis-resistance and the tumor environment on development and maintenance of sacrococcygeal teratomas
研究细胞凋亡抗性和肿瘤环境对骶尾部畸胎瘤发生和维持的作用
- 批准号:
10749797 - 财政年份:2023
- 资助金额:
$ 54.4万 - 项目类别:
The effects of glucose on immune cell apoptosis and mitochondrial membrane potential and the analysis of its mechanism by which glucose might modulate the immune functions.
葡萄糖对免疫细胞凋亡和线粒体膜电位的影响及其调节免疫功能的机制分析。
- 批准号:
22K09076 - 财政年份:2022
- 资助金额:
$ 54.4万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
XAF1 IN P53 SIGNALING, APOPTOSIS AND TUMOR SUPPRESSION
P53 信号传导、细胞凋亡和肿瘤抑制中的 XAF1
- 批准号:
10583516 - 财政年份:2022
- 资助金额:
$ 54.4万 - 项目类别:
Role of Thioredoxin system in regulation of autophagy-apoptosis cross talk in neurons: Uncovering Novel Molecular Interactions.
硫氧还蛋白系统在神经元自噬-凋亡串扰调节中的作用:揭示新的分子相互作用。
- 批准号:
RGPIN-2019-05371 - 财政年份:2022
- 资助金额:
$ 54.4万 - 项目类别:
Discovery Grants Program - Individual














{{item.name}}会员




