Molecular/histologic classification of DClS as predictors of recurrence & survival

DClS 的分子/组织学分类作为复发的预测因子

基本信息

项目摘要

Every year, over 50,000 women in the United States are diagnosed with the non-lethal form of breast cancer known as ductal carcinoma in situ (DCIS). When a diagnosis of DCIS is confirmed on biopsy, most women are treated with partial mastectomy and breast irradiation or elect total mastectomy as a means to avoid radiation therapy. Newer approaches to treatment for DCIS have suggested that surgical excision and observation, with or without endocrine therapy, may be an alternative for small volume, low grade DCIS. However, as a general rule, the underlying biology of DCIS is just beginning to be considered in the context of treating DCIS. A substantial body of basic science regarding the underlying molecular alterations present in DCIS suggests there are two major pathways of progression constituting an indolent and aggressive form of DCIS. The goal of this proposal Is to translate the research data on the numerous molecular genetic abnormalities present In DCIS into a pathology classification algorithm based on a restricted set of molecular, immunohistochemical, or morphologic features that will reliably Identify low grade and high grade progression pathways in DCIS. This would promote conservative treatment strategies for a subset of women with favorable prognosis DCIS and reduce the potential unfavorable consequences of over treating indolent breast disease.
每年,美国有超过50,000名妇女被诊断患有非致命形式的乳腺癌 称为导管原位癌(DCIS)。当活检确诊DCIS时,大多数女性 接受部分乳房切除术和乳房放疗或选择全乳房切除术作为避免放疗的手段 疗法较新的DCIS治疗方法表明,手术切除和观察, 或不进行内分泌治疗,可能是小体积、低级别DCIS的替代方案。作为一名将军, 在治疗DCIS的背景下,DCIS的潜在生物学才刚刚开始被考虑。一 关于DCIS中存在的潜在分子改变的大量基础科学表明, 有两种主要的进展途径构成了惰性和侵袭性形式的DCIS。的目标 这项建议是将目前存在的大量分子遗传异常的研究数据转化为 根据一组有限的分子、免疫组织化学或 形态学特征将可靠地识别DCIS中的低级别和高级别进展途径。这 将促进保守治疗策略的一个子集的妇女与良好的预后DCIS, 减少过度治疗惰性乳腺疾病的潜在不利后果。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Donald Lee Weaver其他文献

Donald Lee Weaver的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Donald Lee Weaver', 18)}}的其他基金

Molecular/histologic classification of DClS as predictors of recurrence & survival
DClS 的分子/组织学分类作为复发的预测因素
  • 批准号:
    8715709
  • 财政年份:
    2014
  • 资助金额:
    $ 14.71万
  • 项目类别:
Molecular/histologic classification of DClS as predictors of recurrence & surviva
DClS 的分子/组织学分类作为复发的预测因子
  • 批准号:
    8555417
  • 财政年份:
    2011
  • 资助金额:
    $ 14.71万
  • 项目类别:
Molecular/histologic classification of DClS as predictors of recurrence & surviva
DClS 的分子/组织学分类作为复发的预测因子
  • 批准号:
    8258528
  • 财政年份:
    2011
  • 资助金额:
    $ 14.71万
  • 项目类别:
Molecular/histologic classification of DClS as predictors of recurrence & surviva
DClS 的分子/组织学分类作为复发的预测因子
  • 批准号:
    8567664
  • 财政年份:
  • 资助金额:
    $ 14.71万
  • 项目类别:

相似海外基金

DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
  • 批准号:
    EP/Y029089/1
  • 财政年份:
    2024
  • 资助金额:
    $ 14.71万
  • 项目类别:
    Research Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
  • 批准号:
    2337776
  • 财政年份:
    2024
  • 资助金额:
    $ 14.71万
  • 项目类别:
    Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
  • 批准号:
    2338816
  • 财政年份:
    2024
  • 资助金额:
    $ 14.71万
  • 项目类别:
    Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
  • 批准号:
    2338846
  • 财政年份:
    2024
  • 资助金额:
    $ 14.71万
  • 项目类别:
    Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
  • 批准号:
    2348261
  • 财政年份:
    2024
  • 资助金额:
    $ 14.71万
  • 项目类别:
    Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
  • 批准号:
    2348346
  • 财政年份:
    2024
  • 资助金额:
    $ 14.71万
  • 项目类别:
    Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
  • 批准号:
    2348457
  • 财政年份:
    2024
  • 资助金额:
    $ 14.71万
  • 项目类别:
    Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
  • 批准号:
    2404989
  • 财政年份:
    2024
  • 资助金额:
    $ 14.71万
  • 项目类别:
    Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
  • 批准号:
    2339310
  • 财政年份:
    2024
  • 资助金额:
    $ 14.71万
  • 项目类别:
    Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
  • 批准号:
    2339669
  • 财政年份:
    2024
  • 资助金额:
    $ 14.71万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了