Development of a Genotype-linked Antibiotic Resistance Platform for Real Time Pathogen Risk Classification and Epidemiology

开发用于实时病原体风险分类和流行病学的基因型相关抗生素耐药性平台

基本信息

  • 批准号:
    9203025
  • 负责人:
  • 金额:
    $ 21.97万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2016
  • 资助国家:
    美国
  • 起止时间:
    2016-08-01 至 2017-07-31
  • 项目状态:
    已结题

项目摘要

Project Summary Antibiotic resistance has become a pressing public health concern due to the rise of pathogenic bacterial strains with mutations that reduce or eliminate the effectiveness of drugs to treat infections. Beta-lactamases produced by some bacteria provide resistance by degrading beta-lactams, one of most widely used class of antibiotics. Originally restricted to penicillins, mutant beta-lactamases that confer resistance to antibiotics including monobactams and most cephalosporins (known as extended spectrum beta lactamases, or ESBLs) are widespread. Clinical isolates are currently characterized for ESBL resistance using inhibition zone tests against a panel of lactam antibiotics, but the results produced by these tests are difficult to standardize and do not translate consistently into clinical practice. In addition, these tests typically produce no information about the genetic basis for the observed resistance, nor the relatedness to other potentially characterized strains. Here, we propose the development of a sequence-based analysis platform and knowledgebase for analyzing molecular signatures of extended-spectrum beta-lactamase resistance that can initially market to health institutions and companies monitoring the spread of EBSL resistance. The platform will consist of an analysis kit that extracts positively-selected variants, beta-lactamase sequences, and other genomic information relevant to the ESBL phenotype from whole genome sequences of clinical samples. A total of 662 samples will be analyzed; of which, 350 ESBL-resistant samples provided by the Mercy Center at UC Merced will be newly sequenced and the rest will be obtained from a published study from the University of Washington. A cloud-based, searchable database with interactive visualization will be served as the repository of the ESBL-resistant features identified in the clinical samples. By leveraging the metadata exchange standards being developed for broad sharing of human genomic data, the rapidly expanding Global Alliance for Genomics and Health application program interface, our work will represent the initial extension of this API for sharing microbial-centric data. The ultimate goal of this project is to create an accurate, predictive resistance classifier using beta-lactamase gene sequences and other genomic markers that are linked to known treatment outcomes and strain phenotypes. We will develop this new classifier based on published methods found to be effective with HIV genotype-phenotype prediction. ESBL-resistant features obtained from the clinical samples in this study will be used for training and testing of the classifier. The powerful combination of sharable database and analytic tools in a single platform will significantly advance knowledge of antibiotic-resistant bacteria, facilitate epidemiological monitoring of the spread of ESBL resistance, and represents a key first step to develop a diagnostic tool to counter ESBL resistance using whole-genome sequences.!
项目总结

项目成果

期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Mechanisms of Theta Plasmid Replication in Enterobacteria and Implications for Adaptation to Its Host.
  • DOI:
    10.1128/ecosalplus.esp-0026-2019
  • 发表时间:
    2020-11
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Kim JW;Bugata V;Cortés-Cortés G;Quevedo-Martínez G;Camps M
  • 通讯作者:
    Camps M
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Patricia Chan其他文献

Patricia Chan的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Patricia Chan', 18)}}的其他基金

A high-throughput kit for detection of RNA modifications
用于检测 RNA 修饰的高通量试剂盒
  • 批准号:
    8841998
  • 财政年份:
    2015
  • 资助金额:
    $ 21.97万
  • 项目类别:

相似海外基金

CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
  • 批准号:
    2337776
  • 财政年份:
    2024
  • 资助金额:
    $ 21.97万
  • 项目类别:
    Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
  • 批准号:
    2338816
  • 财政年份:
    2024
  • 资助金额:
    $ 21.97万
  • 项目类别:
    Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
  • 批准号:
    2338846
  • 财政年份:
    2024
  • 资助金额:
    $ 21.97万
  • 项目类别:
    Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
  • 批准号:
    2348261
  • 财政年份:
    2024
  • 资助金额:
    $ 21.97万
  • 项目类别:
    Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
  • 批准号:
    2348346
  • 财政年份:
    2024
  • 资助金额:
    $ 21.97万
  • 项目类别:
    Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
  • 批准号:
    2348457
  • 财政年份:
    2024
  • 资助金额:
    $ 21.97万
  • 项目类别:
    Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
  • 批准号:
    2404989
  • 财政年份:
    2024
  • 资助金额:
    $ 21.97万
  • 项目类别:
    Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
  • 批准号:
    2339310
  • 财政年份:
    2024
  • 资助金额:
    $ 21.97万
  • 项目类别:
    Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
  • 批准号:
    2339669
  • 财政年份:
    2024
  • 资助金额:
    $ 21.97万
  • 项目类别:
    Continuing Grant
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
  • 批准号:
    EP/Y029089/1
  • 财政年份:
    2024
  • 资助金额:
    $ 21.97万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了