Calculation of Percent Body Fat by Analyzing Virtual Body Models
通过分析虚拟身体模型计算身体脂肪百分比
基本信息
- 批准号:9099872
- 负责人:
- 金额:$ 19.43万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-07-01 至 2019-05-31
- 项目状态:已结题
- 来源:
- 关键词:AdherenceAgeAirAlgorithmsAreaArtificial IntelligenceBehavior TherapyBeliefBody CompositionBody SizeBody SurfaceBody Weight decreasedBody fatBody mass indexChildChronic DiseaseClientClinicalClinical ResearchDataDatabasesDevelopmentDiagnosisDiseaseEpidemiologic StudiesEquipmentFatty acid glycerol estersFutureGoalsGrowthGuidelinesHealthHealth Care CostsHeart DiseasesHumanHuman bodyImageryIncentivesIndividualInterventionLeadLinkMachine LearningMalignant NeoplasmsMapsMeasurementMeasuresMedicalMethodsModelingMonitorMotionMotivationMuscleNon-Insulin-Dependent Diabetes MellitusObesityOutcomeOverweightParticipantPatientsPatternPerceptionPlethysmographyPublic HealthReportingResearchRiskRoleScanningSelf PerceptionSeriesShapesStrokeSurfaceSystemTechniquesTechnologyTimeTrainingUnderweightVariantVisualWaterWeightWeights and Measuresbasebody densitybody volumecostcost effectivedata miningdensitydisorder risklymphatic circulationnovelnovel strategiesobesity treatmentpreferencepublic health researchreconstructionsexstudy populationtoolvirtualweight loss intervention
项目摘要
DESCRIPTION (provided by applicant): Excess body fat is a key underlying factor in the development of numerous chronic diseases, including type II diabetes, heart disease, stroke, and cancer. The AMA recently declared that obesity, itself, is a disease. Most epidemiologic studies utilize Body Mass Index (BMI) to classify people as underweight, normal, overweight, or obese because it is a convenient and simple method that has been shown to correlate with disease risk. Since the majority of the health risks associated with obesity are more directly linked to an overabundance of body fat than weight, measuring body fat is essential for more precise guidelines. However, accurate methods of assessing body fat are expensive, inconvenient, and require immobile equipment. Consequently, the AMA has called for more cost effective and convenient methods to assess body composition to assist doctors in their assessment and treatment. Virtual modeling of humans in particular has provided ways to scan and analyze the body and its motion. Supervised Machine Learning (SML), a sub-field of artificial intelligence, has made great progress in taking measured data to infer new relationships. It is our belief that virtual modeling and SML can provide the techniques necessary to conveniently and accurately calculate the percentage of body fat (%BF) and to provide new tools in treating obesity based on body shapes. The project will develop a system that uses commercially available depth cameras such as the Microsoft Kinect(r) to capture the surface of the human body. This will be accomplished by developing a new algorithm to perform deformable registration of several RGB-Depth views of the body. A new algorithm that uses SML will be developed to calculate percentage body fat using the surface data. The system will be trained and validated by collecting data from a number of subjects. The surface captured will be used to explore the role of visual body representation in motivation and adherence. The developed systems can be implemented in clinical or personal settings and be utilized as a public health research tool and deployed widely given the low-cost of the hardware required. In addition to the immediate impact that the system will have on managing obesity, the project will have a broad impact on a number of areas. A large database of such shapes captured over time may lead to ways to predict how an individual's body shape will change given a particular intervention. Certain medical conditions that result in body shape change, such as those involving lymphatic circulations, may be diagnosed and tracked more easily. Growth patterns of children may be tracked by change of body shapes. Further research can be conducted to determine the effect of body shape on %BF using data mining techniques.
描述(由申请人提供):过量的身体脂肪是许多慢性疾病发展的关键潜在因素,包括II型糖尿病,心脏病,中风和癌症。美国医学协会最近宣布,肥胖本身就是一种疾病。大多数流行病学研究使用体重指数(BMI)将人分为体重不足,正常,超重或肥胖,因为它是一种方便和简单的方法,已被证明与疾病风险相关。由于与肥胖相关的大多数健康风险与过多的身体脂肪而不是体重更直接相关,因此测量身体脂肪对于更精确的指导方针至关重要。然而,评估身体脂肪的准确方法是昂贵的,不方便的,并且需要固定的设备。因此,AMA呼吁更经济有效和方便的方法来评估身体成分,以帮助医生进行评估和治疗。特别是人类的虚拟建模提供了扫描和分析身体及其运动的方法。监督机器学习(SML)是人工智能的一个子领域,在利用测量数据推断新关系方面取得了巨大进展。我们相信,虚拟建模和SML可以提供必要的技术,方便和准确地计算身体脂肪的百分比(%BF),并提供新的工具,在治疗肥胖的基础上的身体形状。该项目将开发一个系统,使用商业上可用的深度相机,如微软Kinect(r)捕捉人体表面。这将通过开发一种新的算法来实现,以执行身体的几个RGB深度视图的可变形配准。将开发一种使用SML的新算法,以使用表面数据计算体脂百分比。该系统将通过从许多受试者收集数据进行培训和验证。所捕获的表面将被用来探索视觉身体表征的动机和坚持的作用。所开发的系统可以在临床或个人环境中实施,并被用作公共卫生研究工具,并且由于所需硬件的低成本而被广泛部署。除了该系统将对管理肥胖产生直接影响外,该项目还将对许多领域产生广泛影响。随着时间的推移捕获的这种形状的大型数据库可能导致预测个体的体型在给定特定干预下将如何变化的方法。某些导致体形改变的疾病,如淋巴循环,可以更容易地诊断和跟踪。儿童的生长模式可以通过身体形状的变化来跟踪。可以使用数据挖掘技术进行进一步的研究以确定体型对%BF的影响。
项目成果
期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
The Development of a BMI-Guided Shape Morphing Technique and the Effects of an Individualized Figure Rating Scale on Self-Perception of Body Size.
- DOI:10.3390/ejihpe10020043
- 发表时间:2020-06
- 期刊:
- 影响因子:0
- 作者:Hudson GM;Lu Y;Zhang X;Hahn J;Zabal JE;Latif F;Philbeck J
- 通讯作者:Philbeck J
Evaluation of performance, acceptance, and compliance of an auto-injector in healthy and rheumatoid arthritic subjects measured by a motion capture system.
通过运动捕捉系统测量健康和类风湿关节炎受试者的自动注射器的性能、接受度和依从性的评估。
- DOI:10.2147/ppa.s160394
- 发表时间:2018
- 期刊:
- 影响因子:2.2
- 作者:Xiao,Xiao;Li,Wei;Clawson,Corbin;Karvani,David;Sondag,Perceval;Hahn,JamesK
- 通讯作者:Hahn,JamesK
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
JAMES K HAHN其他文献
JAMES K HAHN的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('JAMES K HAHN', 18)}}的其他基金
Advancing 3D optical body surface scan technology to assess physiological and psychological effects in highly obese population
推进3D光学体表扫描技术评估高度肥胖人群的生理和心理影响
- 批准号:
10455037 - 财政年份:2021
- 资助金额:
$ 19.43万 - 项目类别:
Advancing 3D optical body surface scan technology to assess physiological and psychological effects in highly obese population
推进3D光学体表扫描技术评估高度肥胖人群的生理和心理影响
- 批准号:
10680550 - 财政年份:2021
- 资助金额:
$ 19.43万 - 项目类别:
Advancing 3D optical body surface scan technology to assess physiological and psychological effects in highly obese population
推进3D光学体表扫描技术评估高度肥胖人群的生理和心理影响
- 批准号:
10280172 - 财政年份:2021
- 资助金额:
$ 19.43万 - 项目类别:
Neonatal Endotracheal Intubation: Enhancing Training Through Computer Simulation and Automated Evaluation
新生儿气管插管:通过计算机模拟和自动评估加强培训
- 批准号:
10194566 - 财政年份:2017
- 资助金额:
$ 19.43万 - 项目类别:
相似国自然基金
靶向递送一氧化碳调控AGE-RAGE级联反应促进糖尿病创面愈合研究
- 批准号:JCZRQN202500010
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
对香豆酸抑制AGE-RAGE-Ang-1通路改善海马血管生成障碍发挥抗阿尔兹海默病作用
- 批准号:2025JJ70209
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
AGE-RAGE通路调控慢性胰腺炎纤维化进程的作用及分子机制
- 批准号:
- 批准年份:2024
- 资助金额:0 万元
- 项目类别:面上项目
甜茶抑制AGE-RAGE通路增强突触可塑性改善小鼠抑郁样行为
- 批准号:2023JJ50274
- 批准年份:2023
- 资助金额:0.0 万元
- 项目类别:省市级项目
蒙药额尔敦-乌日勒基础方调控AGE-RAGE信号通路改善术后认知功能障碍研究
- 批准号:
- 批准年份:2022
- 资助金额:33 万元
- 项目类别:地区科学基金项目
补肾健脾祛瘀方调控AGE/RAGE信号通路在再生障碍性贫血骨髓间充质干细胞功能受损的作用与机制研究
- 批准号:
- 批准年份:2022
- 资助金额:52 万元
- 项目类别:面上项目
LncRNA GAS5在2型糖尿病动脉粥样硬化中对AGE-RAGE 信号通路上相关基因的调控作用及机制研究
- 批准号:n/a
- 批准年份:2022
- 资助金额:10.0 万元
- 项目类别:省市级项目
围绕GLP1-Arginine-AGE/RAGE轴构建探针组学方法探索大柴胡汤异病同治的效应机制
- 批准号:81973577
- 批准年份:2019
- 资助金额:55.0 万元
- 项目类别:面上项目
AGE/RAGE通路microRNA编码基因多态性与2型糖尿病并发冠心病的关联研究
- 批准号:81602908
- 批准年份:2016
- 资助金额:18.0 万元
- 项目类别:青年科学基金项目
高血糖激活滑膜AGE-RAGE-PKC轴致骨关节炎易感的机制研究
- 批准号:81501928
- 批准年份:2015
- 资助金额:18.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Advanced Air Purification Systems at the Age of COVID-19
COVID-19 时代的先进空气净化系统
- 批准号:
RGPIN-2022-04710 - 财政年份:2022
- 资助金额:
$ 19.43万 - 项目类别:
Discovery Grants Program - Individual
Measurements of age of air by multi-clock tracers in stratosphere
平流层多时钟示踪剂测量空气年龄
- 批准号:
19K03963 - 财政年份:2019
- 资助金额:
$ 19.43万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Age-sex-ApoE allele interactions in neuronal and white matter vulnerability to air pollution
年龄-性别-ApoE等位基因相互作用影响神经元和白质对空气污染的脆弱性
- 批准号:
10456754 - 财政年份:2018
- 资助金额:
$ 19.43万 - 项目类别:
Air Pollution exposure risk to school-age children in high density urban environments: Exposure modelling in Hong Kong and the implications for a Canadian context
高密度城市环境中学龄儿童的空气污染暴露风险:香港的暴露模型及其对加拿大环境的影响
- 批准号:
529979-2018 - 财政年份:2018
- 资助金额:
$ 19.43万 - 项目类别:
Canadian Graduate Scholarships Foreign Study Supplements
Age-sex-ApoE allele interactions in neuronal and white matter vulnerability to air pollution
年龄-性别-ApoE等位基因相互作用影响神经元和白质对空气污染的脆弱性
- 批准号:
10216928 - 财政年份:2018
- 资助金额:
$ 19.43万 - 项目类别:
Risk changes by age on disasters, water resources, food resources, and air pollution caused by climate change and their adaptation measures
气候变化导致的灾害、水资源、粮食资源和空气污染的风险随年龄变化及其适应措施
- 批准号:
17KT0066 - 财政年份:2017
- 资助金额:
$ 19.43万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Temporal variation of the clock tracers in the tropical tropopause layer and its impact on the stratospheric age of air
热带对流层顶层时钟示踪剂的时间变化及其对平流层空气年龄的影响
- 批准号:
15K17760 - 财政年份:2015
- 资助金额:
$ 19.43万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
Exposure to air pollution in utero and children's neurodevelopment at 3 years of age: the MIREC birth cohort
子宫内空气污染暴露与 3 岁时儿童神经发育:MIREC 出生队列
- 批准号:
318904 - 财政年份:2014
- 资助金额:
$ 19.43万 - 项目类别:
Fellowship Programs
Inflammation as a mediator of air-pollution induced chronic comorbidities in old age (COPD, Diabetes, Alzheimer's dementia)
炎症是空气污染诱发老年慢性合并症(慢性阻塞性肺病、糖尿病、阿尔茨海默氏痴呆)的介质
- 批准号:
189054245 - 财政年份:2011
- 资助金额:
$ 19.43万 - 项目类别:
Research Grants
Global observation of the stratospheric air age
平流层空气年龄的全球观测
- 批准号:
23340136 - 财政年份:2011
- 资助金额:
$ 19.43万 - 项目类别:
Grant-in-Aid for Scientific Research (B)