Regulation of S. aureus Colonization by NO.
NO 对金黄色葡萄球菌定殖的调节。
基本信息
- 批准号:9075111
- 负责人:
- 金额:$ 36.41万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-02-01 至 2021-01-31
- 项目状态:已结题
- 来源:
- 关键词:Bacterial PhysiologyBiochemicalBiological AssayCell RespirationCellsDiseaseElectron TransportEnvironmentEnzymesGene ExpressionGenesGeneticHumanImmuneIndividualInfectionMediator of activation proteinMetabolismMetalsMinorityModelingMolecularMusNitrate ReductasesNitratesNitric OxideNitric Oxide SynthaseNoseOxidation-ReductionOxygenPhysiologyPlayPreventionProteinsRegulationResearch Project GrantsRespirationRoleSignaling MoleculeStaphylococcus aureusSulfhydryl CompoundsTestingVirulencein vivomicroorganism growthmouse modelnovelnovel strategiespathogenpublic health relevance
项目摘要
DESCRIPTION (provided by applicant): Approximately two billion people are colonized with Staphylococcus aureus worldwide, but only a minority of these individuals will develop invasive infections. This application focuses on the role of nitric oxide (NO*), a molecular mediator that modulates bacterial physiology by targeting protein thiols and metal centers, during nasal colonization by S. aureus. We will test the hypothesis that NO* inhibits virulence and regulates microaerobic respiration in S. aureus. Our preliminary observations suggest that NO* is a critical determinant of whether S. aureus exists in a stable commensal relationship with the host or becomes an invasive pathogen. Our specific aims are to: (1) Assess the mechanism of S. aureus virulence gene inhibition by NO* - We have found that NO* inhibits the expression of virulence genes required for invasive infection. Genetic and biochemical approaches will determine how exogenous NO* inhibits virulence gene expression, focusing on AgrA, MgrA, SarR and SarS, four central transcriptional regulators that are S- nitrosylated by NO*. A novel murine nasal colonization model will be used to determine the effects of host-derived NO* on S. aureus virulence gene expression in vivo. (2) Analyze the regulation of S. aureus microaerobic physiology and colonization by NO* - S. aureus produces its own NO* by expressing an enzyme (saNOS) related to mammalian NO* synthases. We have discovered that saNOS is required for redox sensing during the microaerobic transition from aerobic respiration to nitrate respiration and for nasal colonization in mice. This aim will use expression and biochemical assays to test a novel mechanistic model in which bacterial-derived NO* diverts electron transport to nitrate reductase when O2 concentrations are limiting. Our mouse model will be used to assess the contribution of host- and bacterial-derived NO* to S. aureus colonization in vivo. These studies will establish NO* as a critically important signaling molecule that allows S. aureus to adapt to oxygen-limited conditions within the host environment while maintaining it in a commensal state by modulating virulence gene expression.
描述(由申请人提供):全世界约有20亿人被金黄色葡萄球菌定植,但这些人中只有少数人会发生侵袭性感染。本申请集中于一氧化氮(NO*)的作用,一氧化氮是一种分子介质,通过靶向蛋白质硫醇和金属中心来调节细菌生理学,在S.金黄色。我们将检验NO* 抑制毒力和调节S.金黄色。我们的初步观察表明,NO* 是一个关键的决定因素是否S。金黄色葡萄球菌与宿主存在稳定的寄生关系或成为入侵性病原体。具体目的是:(1)研究S.通过NO* 抑制金黄色葡萄球菌毒力基因-我们已经发现NO* 抑制侵袭性感染所需的毒力基因的表达。遗传和生物化学方法将确定外源NO* 如何抑制毒力基因表达,重点是AgrA、MgrA、SarR和SarS,这四种被NO* S-亚硝基化的中心转录调节因子。一种新的小鼠鼻腔定植模型将用于确定宿主来源的NO* 对S。金黄色葡萄球菌毒力基因的体内表达。(2)分析了S.金黄色葡萄球菌的微氧生理和NO* - S的定殖。金黄色葡萄球菌通过表达与哺乳动物NO* 氧化酶相关的酶(saNOS)产生其自身的NO*。我们已经发现,saNOS是需要从有氧呼吸到硝酸盐呼吸的微需氧过渡期间的氧化还原传感和小鼠的鼻腔定植。这一目标将使用表达和生物化学测定来测试一种新的机制模型,其中细菌衍生的NO* 转移电子传递到硝酸还原酶时,O2浓度是有限的。我们的小鼠模型将用于评估宿主和细菌来源的NO* 对S。金黄色葡萄球菌在体内定植。这些研究将确立NO* 作为一个至关重要的信号分子,使S。金黄色葡萄球菌适应宿主环境中的氧限制条件,同时通过调节毒力基因表达将其维持在一种可耐受的状态。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ferric C Fang其他文献
Antibiotic and ROS linkage questioned
抗生素与活性氧联系存疑
- DOI:
10.1038/nbt.2574 - 发表时间:
2013-05-08 - 期刊:
- 影响因子:41.700
- 作者:
Ferric C Fang - 通讯作者:
Ferric C Fang
Ferric C Fang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ferric C Fang', 18)}}的其他基金
Coordinate Regulation of Salmonella Virulence and Antimicrobial Resistance by MarR Transcription Factors
MarR 转录因子协调调节沙门氏菌毒力和抗菌素耐药性
- 批准号:
10624306 - 财政年份:2020
- 资助金额:
$ 36.41万 - 项目类别:
Coordinate Regulation of Salmonella Virulence and Antimicrobial Resistance by MarR Transcription Factors
MarR 转录因子协调调节沙门氏菌毒力和抗菌素耐药性
- 批准号:
10415057 - 财政年份:2020
- 资助金额:
$ 36.41万 - 项目类别:
Silencing and Counter-Silencing of Salmonella Virulence Genes
沙门氏菌毒力基因的沉默和反沉默
- 批准号:
8338998 - 财政年份:2012
- 资助金额:
$ 36.41万 - 项目类别:
Silencing and Counter-Silencing of Salmonella Virulence Genes
沙门氏菌毒力基因的沉默和反沉默
- 批准号:
8704382 - 财政年份:2012
- 资助金额:
$ 36.41万 - 项目类别:
Silencing and Counter-Silencing of Salmonella Virulence Genes
沙门氏菌毒力基因的沉默和反沉默
- 批准号:
8534704 - 财政年份:2012
- 资助金额:
$ 36.41万 - 项目类别:
相似海外基金
CAREER: Biochemical and Structural Mechanisms Controlling tRNA-Modifying Metalloenzymes
职业:控制 tRNA 修饰金属酶的生化和结构机制
- 批准号:
2339759 - 财政年份:2024
- 资助金额:
$ 36.41万 - 项目类别:
Continuing Grant
Leveraging releasable aryl diazonium ions to probe biochemical systems
利用可释放的芳基重氮离子探测生化系统
- 批准号:
2320160 - 财政年份:2023
- 资助金额:
$ 36.41万 - 项目类别:
Standard Grant
Diurnal environmental adaptation via circadian transcriptional control based on a biochemical oscillator
基于生化振荡器的昼夜节律转录控制的昼夜环境适应
- 批准号:
23H02481 - 财政年份:2023
- 资助金额:
$ 36.41万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Systematic manipulation of tau protein aggregation: bridging biochemical and pathological properties
tau 蛋白聚集的系统操作:桥接生化和病理特性
- 批准号:
479334 - 财政年份:2023
- 资助金额:
$ 36.41万 - 项目类别:
Operating Grants
Converting cytoskeletal forces into biochemical signals
将细胞骨架力转化为生化信号
- 批准号:
10655891 - 财政年份:2023
- 资助金额:
$ 36.41万 - 项目类别:
Enhanced Biochemical Monitoring for Aortic Aneurysm Disease
加强主动脉瘤疾病的生化监测
- 批准号:
10716621 - 财政年份:2023
- 资助金额:
$ 36.41万 - 项目类别:
Biochemical Mechanisms for Sustained Humoral Immunity
持续体液免疫的生化机制
- 批准号:
10637251 - 财政年份:2023
- 资助金额:
$ 36.41万 - 项目类别:
Structural and biochemical investigations into the mechanism and evolution of soluble guanylate cyclase regulation
可溶性鸟苷酸环化酶调节机制和进化的结构和生化研究
- 批准号:
10604822 - 财政年份:2023
- 资助金额:
$ 36.41万 - 项目类别:
Chemical strategies to investigate biochemical crosstalk in human chromatin
研究人类染色质生化串扰的化学策略
- 批准号:
10621634 - 财政年份:2023
- 资助金额:
$ 36.41万 - 项目类别:
Examination of risk assessment and biochemical assessment of fracture development focusing on the body composition of patients with rheumatoid arthritis
关注类风湿性关节炎患者身体成分的骨折发生风险评估和生化评估检查
- 批准号:
22KJ2600 - 财政年份:2023
- 资助金额:
$ 36.41万 - 项目类别:
Grant-in-Aid for JSPS Fellows














{{item.name}}会员




