Suppression and Analysis of Ultrasonic Clutter During Liver Focal Lesion Biopsy

肝脏病灶活检中超声杂波的抑制与分析

基本信息

  • 批准号:
    9030863
  • 负责人:
  • 金额:
    $ 32.67万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2016
  • 资助国家:
    美国
  • 起止时间:
    2016-02-15 至 2020-01-31
  • 项目状态:
    已结题

项目摘要

 DESCRIPTION (provided by applicant): Ultrasonic imaging is the most widely used advanced imaging modality in the United States, and excluding basic x-ray exams, it represents 44% of all imaging studies. Unfortunately, ultrasound images are often subopti- mal, and some studies show degradation in up to 98% of patients. The rate of degradation and freehand nature of clinical ultrasound means that image quality is more dependent on user skill than other advanced modalities, but even in the hands of the most skilled practitioners, ultrasound imaging completely fails in 11-64% of clinical tasks. Ineffective ultrasound is particularly problematic when encountered during guidance tasks like hepatic focal lesion biopsy. Ultrasound is generally considered the best modality for routine biopsy guidance, but when ultrasound imaging fails, clinicians must use other less efficient and more expensive modalities. Ultimately, tumor biopsies are diagnostic in almost every patient; however, more than 72% of biopsies require multiple needle passes, and four or five passes for a single diagnostic sample is not uncommon. Better quality ultrasound imaging can improve this process, which is important for public health because it enables more efficient and safer clinical workflow, and supports crucial clinical studies of personalized cancer treatments. In order to address the challenge of poor visualization during ultrasound guidance of lesion biopsy, we have introduced a new advanced ultrasound image-formation method. Our approach models several mechanisms that causes degradation, and then removes those degrading components from the ultrasound signal. Specifically, we model the degradation that occurs from ultrasound waves that reflect off multiple structures before the waves are turned into an image and degradation from waves that reflect off of extremely reflective structures. When we model for these sources and remove them, the resulting images are quantitatively and qualitatively better than uncorrected images. Our initial model of image degradation had some shortcomings, which we address as part of this proposal. We are also developing a real-time implementation of our algorithm, and assessing the utility of our methods in a small clinical study. Finally, we focus on ultrasound biopsy guidance in the liver for this proposal, but our methods are broadly useful to ultrasound imaging in general and will have far reaching impacts to public health.
 描述(由申请人提供):超声成像是美国使用最广泛的先进成像模式,不包括基本的X射线检查,它占所有成像研究的44%。不幸的是,超声图像通常是次优的,并且一些研究显示高达98%的患者的退化。临床超声的退化率和徒手性质意味着图像质量比其他先进模式更依赖于用户技能,但即使在最熟练的从业人员手中,超声成像也有11-64%的临床任务完全失败。当在肝脏局灶性病变活检等引导任务中遇到无效的超声时,问题尤其严重。超声通常被认为是常规活检引导的最佳方式,但当超声成像失败时,临床医生必须使用其他效率较低且更昂贵的方式。最后, 肿瘤活检几乎对每个患者都是诊断性的;然而,超过72%的活检需要多次穿刺,单个诊断样本需要4或5次穿刺并不罕见。更高质量的超声成像可以改善这一过程,这对公共卫生非常重要,因为它可以使临床工作更有效,更安全,并支持关键的 个性化癌症治疗的临床研究。为了解决病变活检超声引导过程中可视化差的挑战,我们引入了一种新的先进的超声成像方法。我们的方法模拟了几种导致退化的机制,然后从超声信号中去除这些退化成分。具体来说,我们对超声波在转换成图像之前从多个结构反射的退化以及从极端反射结构反射的波的退化进行了建模。当我们对这些源进行建模并将其删除时,所产生的图像在数量和质量上都优于未校正的图像。我们最初的图像退化模型有一些缺点,我们作为本提案的一部分来解决。我们还在开发我们算法的实时实现,并在一项小型临床研究中评估我们方法的实用性。最后,我们把重点放在肝脏超声活检引导这项建议,但我们的方法是广泛有用的超声成像一般,并将对公众健康产生深远的影响。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Brett C Byram其他文献

Brett C Byram的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Brett C Byram', 18)}}的其他基金

Ultrasound clutter and noise improvements applied to echocardiographic left atrial appendage visualization
超声波杂波和噪声改进应用于超声心动图左心耳可视化
  • 批准号:
    10687839
  • 财政年份:
    2021
  • 资助金额:
    $ 32.67万
  • 项目类别:
Ultrasound clutter and noise improvements applied to echocardiographic left atrial appendage visualization
超声波杂波和噪声改进应用于超声心动图左心耳可视化
  • 批准号:
    10299361
  • 财政年份:
    2021
  • 资助金额:
    $ 32.67万
  • 项目类别:

相似海外基金

Nonlinear Acoustics for the conditioning monitoring of Aerospace structures (NACMAS)
用于航空航天结构调节监测的非线性声学 (NACMAS)
  • 批准号:
    10078324
  • 财政年份:
    2023
  • 资助金额:
    $ 32.67万
  • 项目类别:
    BEIS-Funded Programmes
ORCC: Marine predator and prey response to climate change: Synthesis of Acoustics, Physiology, Prey, and Habitat In a Rapidly changing Environment (SAPPHIRE)
ORCC:海洋捕食者和猎物对气候变化的反应:快速变化环境中声学、生理学、猎物和栖息地的综合(蓝宝石)
  • 批准号:
    2308300
  • 财政年份:
    2023
  • 资助金额:
    $ 32.67万
  • 项目类别:
    Continuing Grant
University of Salford (The) and KP Acoustics Group Limited KTP 22_23 R1
索尔福德大学 (The) 和 KP Acoustics Group Limited KTP 22_23 R1
  • 批准号:
    10033989
  • 财政年份:
    2023
  • 资助金额:
    $ 32.67万
  • 项目类别:
    Knowledge Transfer Partnership
User-controllable and Physics-informed Neural Acoustics Fields for Multichannel Audio Rendering and Analysis in Mixed Reality Application
用于混合现实应用中多通道音频渲染和分析的用户可控且基于物理的神经声学场
  • 批准号:
    23K16913
  • 财政年份:
    2023
  • 资助金额:
    $ 32.67万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Combined radiation acoustics and ultrasound imaging for real-time guidance in radiotherapy
结合辐射声学和超声成像,用于放射治疗的实时指导
  • 批准号:
    10582051
  • 财政年份:
    2023
  • 资助金额:
    $ 32.67万
  • 项目类别:
Comprehensive assessment of speech physiology and acoustics in Parkinson's disease progression
帕金森病进展中言语生理学和声学的综合评估
  • 批准号:
    10602958
  • 财政年份:
    2023
  • 资助金额:
    $ 32.67万
  • 项目类别:
The acoustics of climate change - long-term observations in the arctic oceans
气候变化的声学——北冰洋的长期观测
  • 批准号:
    2889921
  • 财政年份:
    2023
  • 资助金额:
    $ 32.67万
  • 项目类别:
    Studentship
Collaborative Research: Estimating Articulatory Constriction Place and Timing from Speech Acoustics
合作研究:从语音声学估计发音收缩位置和时间
  • 批准号:
    2343847
  • 财政年份:
    2023
  • 资助金额:
    $ 32.67万
  • 项目类别:
    Standard Grant
Flow Physics and Vortex-Induced Acoustics in Bio-Inspired Collective Locomotion
仿生集体运动中的流动物理学和涡激声学
  • 批准号:
    DGECR-2022-00019
  • 财政年份:
    2022
  • 资助金额:
    $ 32.67万
  • 项目类别:
    Discovery Launch Supplement
Collaborative Research: Estimating Articulatory Constriction Place and Timing from Speech Acoustics
合作研究:从语音声学估计发音收缩位置和时间
  • 批准号:
    2141275
  • 财政年份:
    2022
  • 资助金额:
    $ 32.67万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了