Molecular and physiological analysis of mitochondrial calcium uptake

线粒体钙摄取的分子和生理分析

基本信息

项目摘要

 DESCRIPTION (provided by applicant): Popularly known as "the powerhouse of the cell," mitochondria are not only the site of metabolism and energy generation but also a hub for other cellular processes, including the initiation of cell death. Mitochondrial uptake of the signaling molecule calcium plays a role in the stimulation of ATP production, but too much calcium can lead to opening of the mitochondrial permeability transition pore (mPTP), triggering necrosis. The recent identification of the molecule forming the pore through which calcium can rapidly enter the mitochondria, the mitochondrial calcium uniporter (MCU), has provided a genetic means to directly test the functional importance of calcium uptake. In particular, MCU is part of a large multi-protein complex including other protein components. EMRE and MICU1 are two of these proteins that in cell lines have been shown to play critical roles in regulation of calcium uptake. EMRE was found to be necessary for MCU activity, and its deletion blocked calcium from entering mitochondria. Though its mechanism is controversial, MICU1 has been characterized as a gatekeeper of MCU, inhibiting MCU activity at low levels of extramitochondrial calcium and stimulating MCU when calcium levels rise. This project began with the generation of the first animal models of EMRE and MICU1 deletion. The aims of this project are to determine the impact of EMRE and MICU1 deletion on isolated mitochondria, on primary cells, and on the physiology of the whole animal. The new EMRE and MICU1 knockout mice also make it possible to determine the topology of the calcium uniporter complex, measure effects on basal bioenergetics, and elucidate the role of EMRE and MICU1 respectively in the regulation of mitochondrial calcium uptake and homeostasis. Furthermore, mouse models will reveal the consequences of mitochondrial calcium deregulation on cell death responses, physiological phenotypes including body weight and composition, and disease pathophysiology. Interestingly, human patients with loss-of-function mutations in MICU1 present with conditions such as proximal myopathy and extrapyramidal motor disorder. MICU1 knockout mice are preliminarily observed to exhibit ataxia and tremors, suggesting that this model may mirror human disease features and thus potentially motivate innovative therapies to treat mitochondrial disorder. Altogether, EMRE and MICU1 knockout mice are valuable resources for answering biological questions with both basic and clinical relevance.
 描述(由适用提供):俗称“细胞的动力室”,线粒体不仅是代谢和能量产生的位置,而且还是其他细胞过程的枢纽,包括细胞死亡的倡议。信号分子钙的线粒体摄取在ATP产生的刺激中起作用,但是过多的钙会导致线粒体通透性过渡孔(MPTP)的打开,从而触发坏死。最近鉴定出钙可以快速进入线粒体的分子,即线粒体钙统一(MCU)提供了一种遗传平均值,可以直接测试钙吸收的功能重要性。特别是,MCU是 大型多蛋白质复合物,包括其他蛋白质成分。 EMRE和MICU1是这些蛋白质中的两种,在细胞系中已显示出在钙摄取调节中起关键作用。发现EMRE对于MCU活性是必需的,其缺失阻止了钙进入线粒体。尽管它的机制是有争议的,但MICU1已被描述为MCU的守门人,在钙水平升高时抑制低水平的MCU活性并刺激MCU。 该项目始于EMRE和MICU1缺失的第一个动物模型的产生。该项目的目的是确定EMRE和MICU1缺失对分离的线粒体,原代细胞以及整个动物生理学的影响。新的EMRE和MICU1敲除小鼠还可以确定钙通用复合物的拓扑,测量对基本生物能力的影响,并阐明EMRE和MICU1的作用,有趣的是,MICU1中具有功能丧失突变的人类患者具有近端肌病和外肌肉外运动障碍等条件。初步观察到MICU1敲除小鼠会杀死共济失调和震颤,这表明该模型可以反映人类疾病的特征,从而有可能激励创新疗法治疗线粒体疾病。总体而言,EMRE和MICU1敲除小鼠是回答具有基本和临床相关性的生物学问题的宝贵资源。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Julia Chang Liu其他文献

Julia Chang Liu的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Julia Chang Liu', 18)}}的其他基金

Modulating mitochondrial calcium in cardiac homeostasis and disease
调节心脏稳态和疾病中的线粒体钙
  • 批准号:
    10683219
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
Molecular mechanism and physiological function of mitochondrial calcium regulation
线粒体钙调节的分子机制及生理功能
  • 批准号:
    10455701
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
Molecular mechanism and physiological function of mitochondrial calcium regulation
线粒体钙调节的分子机制及生理功能
  • 批准号:
    10192800
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
Molecular mechanism and physiological function of mitochondrial calcium regulation
线粒体钙调节的分子机制及生理功能
  • 批准号:
    9370196
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:

相似国自然基金

肾—骨应答调控骨骼VDR/RXR对糖尿病肾病动物模型FGF23分泌的影响及中药的干预作用
  • 批准号:
    82074395
  • 批准年份:
    2020
  • 资助金额:
    55 万元
  • 项目类别:
    面上项目
基于细胞自噬调控的苦参碱对多囊肾小鼠动物模型肾囊肿形成的影响和机制研究
  • 批准号:
  • 批准年份:
    2019
  • 资助金额:
    33 万元
  • 项目类别:
    地区科学基金项目
NRSF表达水平对抑郁模型小鼠行为的影响及其分子机制研究
  • 批准号:
    81801333
  • 批准年份:
    2018
  • 资助金额:
    21.0 万元
  • 项目类别:
    青年科学基金项目
靶向诱导merlin/p53协同性亚细胞穿梭对听神经瘤在体生长的影响
  • 批准号:
    81800898
  • 批准年份:
    2018
  • 资助金额:
    21.0 万元
  • 项目类别:
    青年科学基金项目
伪狂犬病病毒激活三叉神经节细胞对其NF-кB和PI3K/Akt信号转导通路影响的分子机制研究
  • 批准号:
    31860716
  • 批准年份:
    2018
  • 资助金额:
    39.0 万元
  • 项目类别:
    地区科学基金项目

相似海外基金

Understanding the Mechanisms and Consequences of Basement Membrane Aging in Vivo
了解体内基底膜老化的机制和后果
  • 批准号:
    10465010
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
A National NHP Embryo Resource of Human Genetic Disease Models
国家NHP人类遗传病模型胚胎资源
  • 批准号:
    10556087
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Electrophysiologic characterization of circadian rhythms of prefrontal cortical network states in a diurnal rodent
昼夜啮齿动物前额皮质网络状态昼夜节律的电生理学特征
  • 批准号:
    10556475
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Endothelial Cell Reprogramming in Familial Intracranial Aneurysm
家族性颅内动脉瘤的内皮细胞重编程
  • 批准号:
    10595404
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Investigation of UBQLN2 in neuronal dysfunction and ALS-FTD
UBQLN2 在神经元功能障碍和 ALS-FTD 中的研究
  • 批准号:
    10638277
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了