Post Translational Regulation of TET2 Function by Glucose Signaling
葡萄糖信号转导对 TET2 功能的翻译后调节
基本信息
- 批准号:9100886
- 负责人:
- 金额:$ 33.73万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-07-01 至 2019-03-31
- 项目状态:已结题
- 来源:
- 关键词:5&apos-AMP-activated protein kinaseAffectBinding ProteinsBiochemicalBiologicalBiological ProcessCancer Cell GrowthCell physiologyCellsCoupledCuesCytosineDNADNA MethylationDNA Methylation RegulationDataDiabetes MellitusDietDioxygenasesDiseaseDisease ProgressionDown-RegulationDrug TargetingEnvironmentEnzymesEpigenetic ProcessFamilyGene ExpressionGene SilencingGenesGlucoseGoalsHealthHexosaminesHomeostasisHumanHyperglycemiaHypoglycemiaIndiumLifeLightLinkMalignant NeoplasmsMapsMediatingMemoryMetabolicModificationMolecularNutrientOutcome StudyPathologic ProcessesPathway interactionsPatternPhenotypePhosphorylationPhosphoserinePlayPositioning AttributePost-Translational Protein ProcessingPost-Translational RegulationProtein translocationProteinsRegulationReportingResearchResolutionRoleSerineSignal PathwaySignal TransductionSolidSumTechnologyTherapeuticTumor Suppressor ProteinsUDP-N-acetylglucosamine-peptide beta-N-acetylglucosaminyltransferasebasecancer cellembryonic stem cellepigenomegenome-wideglucose uptakeglycosylationmethylomenew therapeutic targetnovelnovel therapeuticsorgan growthpreventprogramspromoterprospectiveprotein functionresponsetreatment strategytumor growthtumor progression
项目摘要
DESCRIPTION (provided by applicant): DNA methylation at the 5 position of cytosine (5mC) is a critical epigenetic modification and plays key roles in various biological and pathological processes. The ten-eleven translocation (TET) families of dioxygenases primarily catalyze the conversion of 5mC to 5-hydroxymethylcytosine (5hmC). Several recent studies demonstrated that TET activities and the resultant 5hmC levels function as an epigenetic barrier for maintaining ES cell pluriopotency, governing organ development and preventing cancer progression. In particular, cancer cells have been shown to become more aggressive when TET gene expression or activity is compromised. These studies suggest that 5hmC and TET family proteins function as a checkpoint for cancer cell growth. For these reasons, investigating how TET proteins and 5hmC levels are regulated is necessary to fully understand how TET and 5hmC contribute to normal and pathological homeostasis. Based on solid preliminary data and the well-established deregulation of glucose uptake in cancer cells, we hypothesize that TET2 function is post-translationally regulated by distinctive post-translational modification (PTM), which can be modulated by glucose signaling. We further propose that the loss of the 5hmC tumor suppressor pathway in cancer cells is in part attributed to elevated glucose uptake and deregulated glucose signaling. The primary goal of this study is to understand how TET2 levels and activity are regulated by distinctive PTMs, which in turn impact on the TET2-controled DNA methylome/hydroxymethylome. Moreover, this proposal will unravel how protein-modifying enzymes differentially regulate TET2 PTMs in response to changes of glucose signaling. Specifically, in aim1 we will identify the cancer promoting changes to the hydorxymethylome/methylome that result from the deregulation of TET2 in response to aberrant glucose signaling, using the high resolution genome-wide mapping technologies we have developed. In aim 2&3, we will identify and characterize two types of glucose dependent PTMs observed on TET2, (glycosylation and phosphorylation), which are carried out by OGT and AMPK. Altogether, this proposal will characterize a novel regulatory circuit that maintains 5hmC levels through the posttranslational modifications of TET2 in response to glucose signaling. If successful, this proposal will significantly advance our understanding of the molecular mechanisms that facilitate cancer related changes at the epigenetic level in response to metabolic deregulation. This study will also establish a firm mechanistic link between changes in metabolic input to the adaption of the cancer epigenome. More importantly, identifying the molecular switch controlled by environmental cues that can turn on/off the 5hmC anti-tumor growth barrier in cancer will provide new therapeutic drug targeting strategies and treatments.
描述(申请人提供):DNA 胞嘧啶 5 位(5mC)甲基化是一种关键的表观遗传修饰,在各种生物和病理过程中发挥着关键作用。双加氧酶的 10-11 易位 (TET) 家族主要催化 5mC 转化为 5-羟甲基胞嘧啶 (5hmC)。最近的几项研究表明,TET 活性和由此产生的 5hmC 水平可作为表观遗传屏障,维持 ES 细胞多能性、控制器官发育和预防癌症进展。特别是,当 TET 基因表达或活性受到损害时,癌细胞会变得更具攻击性。这些研究表明 5hmC 和 TET 家族蛋白充当癌细胞生长的检查点。由于这些原因,有必要研究 TET 蛋白和 5hmC 水平的调节机制,以充分了解 TET 和 5hmC 如何促进正常和病理稳态。基于可靠的初步数据和癌细胞中葡萄糖摄取的失调,我们假设 TET2 功能受到独特的翻译后修饰 (PTM) 的翻译后调节,而这种修饰可以通过葡萄糖信号传导进行调节。我们进一步提出,癌细胞中 5hmC 肿瘤抑制途径的丧失部分归因于葡萄糖摄取增加和葡萄糖信号传导失调。本研究的主要目标是了解 TET2 水平和活性如何受到独特 PTM 的调节,进而影响 TET2 控制的 DNA 甲基化组/羟甲基化组。此外,该提案将揭示蛋白质修饰酶如何差异调节 TET2 PTM 以响应葡萄糖信号传导的变化。具体来说,在目标 1 中,我们将使用我们开发的高分辨率全基因组作图技术,确定因响应异常葡萄糖信号传导而导致 TET2 失调而导致的癌症促进羟甲基化组/甲基化组的变化。在目标 2 和 3 中,我们将鉴定并表征在 TET2 上观察到的两种类型的葡萄糖依赖性 PTM(糖基化和磷酸化),它们由 OGT 和 AMPK 进行。总而言之,该提案将描述一种新颖的调节回路,该回路通过响应葡萄糖信号传导的 TET2 翻译后修饰来维持 5hmC 水平。如果成功,该提议将显着增进我们对分子机制的理解,这些分子机制在表观遗传水平上促进癌症相关变化,以响应代谢失调。这项研究还将在代谢输入的变化与癌症表观基因组的适应之间建立牢固的机制联系。更重要的是,识别由环境线索控制的分子开关,可以打开/关闭癌症中的5hmC抗肿瘤生长屏障,将提供新的治疗药物靶向策略和治疗。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Yujiang Geno Shi其他文献
Structural insight into substrate recognition by histone demethylase LSD2/KDM1b
- DOI:
- 发表时间:
2013 - 期刊:
- 影响因子:
- 作者:
Zhenghong Dong;Jian Fang;Ping Wang;Tingting Zhu;Wei Gong;Rui Fang;Yujiang Geno Shi;Ze Li;Yanhui Xu; - 通讯作者:
TET2 promotes anti-tumor immunity by governing G-MDSCs andCD8(+)T-cell numbers
- DOI:
10 -->:10.15252/embr.201949425文章关键词:Anti‐tumor immune response,Granulocytic myeloid‐derived suppr - 发表时间:
2020 - 期刊:
- 影响因子:
- 作者:
Shuangqi Li;Jiuxing Feng;Feizhen Wu;Jiabing Cai;Xinyu Zhang;Haikun Wang;Irfete S Fetahu;Isabella Iwanicki;Dingailu Ma;Tao Hu;Hang Liu;Bingjie Wang;Guoming Shi;Li Tan;Yujiang Geno Shi - 通讯作者:
Yujiang Geno Shi
SPT6 regulates H3K14Ac deposition in mouse embryonic stem cells
SPT6调节小鼠胚胎干细胞中H3K14Ac的沉积
- DOI:
10.1016/j.celrep.2025.115757 - 发表时间:
2025-06-24 - 期刊:
- 影响因子:6.900
- 作者:
Daixuan Zhang;Li Dong;Ying Cai;Peng Zhao;Qingqing Cai;Jian Zhang;Yajun Hu;Mandi Mu;Siyi Cheng;Jin Wang;Min Zeng;Chenxi He;Lei Zhang;Hui Yang;Fei Xavier Chen;Li Tan;Feizhen Wu;Yujiang Geno Shi;Wenqi Xu;Hongjie Shen - 通讯作者:
Hongjie Shen
A tango between NSUN2 and TET2: defining both the fate and origin of RNA
- DOI:
10.1007/s11427-024-2862-x - 发表时间:
2025-03-12 - 期刊:
- 影响因子:9.500
- 作者:
Tianbao Shang;Lu Liu;Zitan Li;Yichi Xu;Yujiang Geno Shi;Li Tan - 通讯作者:
Li Tan
Binding to m6A RNA promotes YTHDF2-mediated phase separation
- DOI:
- 发表时间:
2020 - 期刊:
- 影响因子:
- 作者:
Jiahua Wang;Liyong Wang;Jianbo Diao;Yujiang Geno Shi;Yang Shi;Honghui Ma;Hongjie Shen - 通讯作者:
Hongjie Shen
Yujiang Geno Shi的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Yujiang Geno Shi', 18)}}的其他基金
De-Regulation of 5hmC/TET2 Tumor Suppressor under Anti-Estrogen Therapy
抗雌激素治疗下 5hmC/TET2 肿瘤抑制因子的失调
- 批准号:
9250733 - 财政年份:2016
- 资助金额:
$ 33.73万 - 项目类别:
Histone Demethylation A Novel Mechanism in Hormone-Mediated Gene Regulation
组蛋白去甲基化是激素介导的基因调控的新机制
- 批准号:
7467859 - 财政年份:2009
- 资助金额:
$ 33.73万 - 项目类别:
Roles of CtBP in cancer and its mechanism of action
CtBP在癌症中的作用及其作用机制
- 批准号:
6784605 - 财政年份:2003
- 资助金额:
$ 33.73万 - 项目类别:
Roles of CtBP in cancer and its mechanism of action
CtBP在癌症中的作用及其作用机制
- 批准号:
6649016 - 财政年份:2003
- 资助金额:
$ 33.73万 - 项目类别:
相似海外基金
Pharmacological targeting of AMP-activated protein kinase for immune cell regulation in Type 1 Diabetes
AMP 激活蛋白激酶对 1 型糖尿病免疫细胞调节的药理学靶向
- 批准号:
2867610 - 财政年份:2023
- 资助金额:
$ 33.73万 - 项目类别:
Studentship
Establishing AMP-activated protein kinase as a regulator of adipose stem cell plasticity and function in health and disease
建立 AMP 激活蛋白激酶作为脂肪干细胞可塑性和健康和疾病功能的调节剂
- 批准号:
BB/W009633/1 - 财政年份:2022
- 资助金额:
$ 33.73万 - 项目类别:
Fellowship
Determining the role of AMP-activated protein kinase in the integration of skeletal muscle metabolism and circadian biology
确定 AMP 激活蛋白激酶在骨骼肌代谢和昼夜节律生物学整合中的作用
- 批准号:
532989-2019 - 财政年份:2021
- 资助金额:
$ 33.73万 - 项目类别:
Postdoctoral Fellowships
Metabolic control of integrin membrane traffic by AMP-activated protein kinase controls cell migration.
AMP 激活的蛋白激酶对整合素膜运输的代谢控制控制着细胞迁移。
- 批准号:
459043 - 财政年份:2021
- 资助金额:
$ 33.73万 - 项目类别:
Studentship Programs
Determining the role of AMP-activated protein kinase in the integration of skeletal muscle metabolism and circadian biology
确定 AMP 激活蛋白激酶在骨骼肌代谢和昼夜节律生物学整合中的作用
- 批准号:
532989-2019 - 财政年份:2020
- 资助金额:
$ 33.73万 - 项目类别:
Postdoctoral Fellowships
The Role of AMP-activated Protein Kinase in GVHD-causing T Cells
AMP 激活的蛋白激酶在引起 GVHD 的 T 细胞中的作用
- 批准号:
10561642 - 财政年份:2019
- 资助金额:
$ 33.73万 - 项目类别:
Determining the role of AMP-activated protein kinase in the integration of skeletal muscle metabolism and circadian biology
确定 AMP 激活蛋白激酶在骨骼肌代谢和昼夜节律生物学整合中的作用
- 批准号:
532989-2019 - 财政年份:2019
- 资助金额:
$ 33.73万 - 项目类别:
Postdoctoral Fellowships
Treating Diabetic Inflammation using AMP-Activated Protein Kinase Activators
使用 AMP 激活的蛋白激酶激活剂治疗糖尿病炎症
- 批准号:
2243045 - 财政年份:2019
- 资助金额:
$ 33.73万 - 项目类别:
Studentship
The Role of AMP-activated Protein Kinase in GVHD-causing T Cells
AMP 激活的蛋白激酶在引起 GVHD 的 T 细胞中的作用
- 批准号:
10359032 - 财政年份:2019
- 资助金额:
$ 33.73万 - 项目类别:
Investigating the therapeutic potential of AMP-activated protein kinase in myotonic dystrophy type 1
研究 AMP 激活蛋白激酶在 1 型强直性肌营养不良中的治疗潜力
- 批准号:
428988 - 财政年份:2019
- 资助金额:
$ 33.73万 - 项目类别:
Studentship Programs














{{item.name}}会员




