Improving Topical Drug Delivery for Treatment of Chronic Rhinosinusitis
改善慢性鼻窦炎治疗的局部给药
基本信息
- 批准号:9039141
- 负责人:
- 金额:$ 37.82万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-04-01 至 2019-03-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAdverse effectsAerosolsAffectAmericanAnatomyAnti-Inflammatory AgentsAnti-inflammatoryAntibioticsAreaBreathingChronicClinicalClinical ResearchComputer SimulationDepositionDevelopmentDevicesDiseaseDrug Delivery SystemsFailureGeometryHeadHealthHealthcareIn VitroInflammation MediatorsInstructionLasersLiquid substanceMeasurementMeasuresMedicalMedicineMethodsModelingMorbidity - disease rateNebulizerNoseOperative Surgical ProceduresOralOutcomePatient EducationPatient SelectionPatient-Focused OutcomesPatientsPersonal SatisfactionPharmaceutical PreparationsPhysiciansPopulationPositioning AttributeRadionuclide ImagingRandomized Controlled Clinical TrialsRecommendationResearchSinusSiteSocietiesStructure of mucous membrane of noseSymptomsTechniquesTestingX-Ray Computed Tomographyaerosolizedbasechronic rhinosinusitiscostimprovedin vivoinstrumentationmodel developmentparticleprospectiveresearch studyresponsesatisfactionsimulation
项目摘要
DESCRIPTION: Chronic rhinosinusitis (CRS) affects over 11 million Americans each year at an annual cost of $8.6 billion. CRS is treated with topical medications and oral antibiotics, but faild response to medical therapy results in 257,000 surgeries annually in the U.S. While surgery alters anatomy, it does not address the inflammatory mediators contributing to this disease. Oral antibiotic and anti-inflammatory medicines are, therefore, needed before and after surgery, but long-term use may not be feasible due to cost and systemic side-effects. Topical medications potentially deliver high concentrations of these drugs to nasal mucosa while minimizing systemic side-effects. However, these potent drugs often fail to help patients even after surgery, possibly due in part to insufficient drug delivery to affected areas. Furthermore, patient instructions for using topical drugs have not been studied in a CRS population, even though this medication is frequently prescribed for this population. The long-term objective of the proposed research is to fundamentally improve CRS treatment by optimizing medical treatment, specifically, maximizing topical drug delivery in areas of the sinonasal cavity affected by CRS. By improving and optimizing medical treatment of CRS, downstream benefits to society and patients can potentially be realized - e.g. refined criteria for patient selection for sinus surger, decreased healthcare related costs, and decreased morbidities related to sinus surgery, and ultimately increased patient well-being and satisfaction. In this project, we will focus on improving the use of nasal sprays, the topical medication most frequently prescribed for CRS. We will combine computational fluid dynamics (CFD) modeling with experiments in nasal replicas and in CRS patients in a prospective clinical study to quantify aerosol particle delivery to target sites in the sinonasal cavities of CRS patients before and after functional endoscopic sinus surgery (FESS), the most frequent surgical treatment for CRS. Our central hypotheses are that (1) there are combinations of head positions, nozzle positions, and breathing techniques that increase target-site particle deposition (TSPD) ("optimal use conditions") before and after FESS over TSPD obtained using physician recommendations for these factors ("current use conditions"), and (2) CFD-derived optimal use conditions will increase TSPD in nasal replicas and in CRS patients compared to TSPD under current use conditions. The proposed research is expected to develop instructions and specifications for improved use of nasal sprays and nebulizers that maximize target-site particle deposition. This information will help improve medical management of CRS, potentially leading to better outcomes for patients who suffer from this prevalent disease. In addition, this research will be the basis for a subsequent randomized, controlled, clinical trial that will measure clinical outcomes in CRS patients after maximal delivery of aerosolized topical medications.
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Julia Spencer Kimbell其他文献
Julia Spencer Kimbell的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Julia Spencer Kimbell', 18)}}的其他基金
Predicting the Need for Surgery in Pediatric Subglottic Stenosis using Airway Elastography Derived from Endoscopic OCT and Intraluminal Pressure Measurement
使用内窥镜 OCT 和腔内压力测量得出的气道弹性成像预测小儿声门下狭窄的手术需求
- 批准号:
10249350 - 财政年份:2020
- 资助金额:
$ 37.82万 - 项目类别:
相似海外基金
Unraveling Adverse Effects of Checkpoint Inhibitors Using iPSC-derived Cardiac Organoids
使用 iPSC 衍生的心脏类器官揭示检查点抑制剂的副作用
- 批准号:
10591918 - 财政年份:2023
- 资助金额:
$ 37.82万 - 项目类别:
Optimization of mRNA-LNP vaccine for attenuating adverse effects and analysis of mechanism behind adverse effects
mRNA-LNP疫苗减轻不良反应的优化及不良反应机制分析
- 批准号:
23K15383 - 财政年份:2023
- 资助金额:
$ 37.82万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Elucidation of adverse effects of combined exposure to low-dose chemicals in the living environment on allergic diseases and attempts to reduce allergy
阐明生活环境中低剂量化学品联合暴露对过敏性疾病的不良影响并尝试减少过敏
- 批准号:
23H03556 - 财政年份:2023
- 资助金额:
$ 37.82万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Green tea-based nano-enhancer as an adjuvant for amplified efficacy and reduced adverse effects in anti-angiogenic drug treatments
基于绿茶的纳米增强剂作为抗血管生成药物治疗中增强疗效并减少不良反应的佐剂
- 批准号:
23K17212 - 财政年份:2023
- 资助金额:
$ 37.82万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Effects of Tobacco Heating System on the male reproductive function and towards to the reduce of the adverse effects.
烟草加热系统对男性生殖功能的影响以及减少不利影响。
- 批准号:
22H03519 - 财政年份:2022
- 资助金额:
$ 37.82万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Mitigating the Adverse Effects of Ultrafines in Pressure Filtration of Oil Sands Tailings
减轻油砂尾矿压力过滤中超细粉的不利影响
- 批准号:
563657-2021 - 财政年份:2022
- 资助金额:
$ 37.82万 - 项目类别:
Alliance Grants
1/4-Deciphering Mechanisms of ECT Outcomes and Adverse Effects (DECODE)
1/4-破译ECT结果和不良反应的机制(DECODE)
- 批准号:
10521849 - 财政年份:2022
- 资助金额:
$ 37.82万 - 项目类别:
4/4-Deciphering Mechanisms of ECT Outcomes and Adverse Effects (DECODE)
4/4-破译ECT结果和不良反应的机制(DECODE)
- 批准号:
10671022 - 财政年份:2022
- 资助金额:
$ 37.82万 - 项目类别:
2/4 Deciphering Mechanisms of ECT Outcomes and Adverse Effects (DECODE)
2/4 ECT 结果和不良反应的破译机制(DECODE)
- 批准号:
10670918 - 财政年份:2022
- 资助金额:
$ 37.82万 - 项目类别:
Downsides of downhill: The adverse effects of head vibration associated with downhill mountain biking on visuomotor and cognitive function
速降的缺点:与速降山地自行车相关的头部振动对视觉运动和认知功能的不利影响
- 批准号:
2706416 - 财政年份:2022
- 资助金额:
$ 37.82万 - 项目类别:
Studentship














{{item.name}}会员




