Crowd-Sourced Annotation of Longitudinal Sensor Data to Enhance Data-Driven Precision Medicine for Behavioral Health

纵向传感器数据的众包注释可增强行为健康的数据驱动精准医学

基本信息

  • 批准号:
    9078547
  • 负责人:
  • 金额:
    $ 29.94万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2016
  • 资助国家:
    美国
  • 起止时间:
    2016-09-30 至 2018-06-30
  • 项目状态:
    已结题

项目摘要

 DESCRIPTION (provided by applicant): Longitudinal sensor data collected passively from mobile phones and other wearable sensors will transform behavioral science by allowing researchers to use "big data," but at the person-level, to understand how behavior and related environmental exposures impact health outcomes. Computers will analyze individual-level data streams to permit unprecedented, individual-level precision in research and intervention. This type of precision medicine enables targeting of science and medicine to a particular individual's genetic makeup, past and current situation, and behavioral health exposures. Mobile phones, smartwatches, and common fitness devices are already capable of generating rich data on behavior, but developing algorithms to interpret that raw data using the latest machine learning algorithms requires practical strategies to annotate large datasets. We propose to develop and test the feasibility and usability of a mobile and online crowdsource-based system for cleaning and annotating behavioral data collected from motion sensors, mobile phones, and other mobile devices. Our goal is to demonstrate how individuals playing mobile and online games - the "crowd" - can collectively, affordably, and incrementally clean and add important metadata to raw sensor data that has been passively collected from individuals, similar to that from population-scale surveillance studies (e.g., the National Health and Nutrition Examination Survey (NHANES) and UK Biobank) and those planned for studies such as the White House's Precision Medicine Initiative. The game-playing crowd will thereby dramatically improve the utility of the datasets collected for a variety of scientific studies. We will validate our prototye system on datasets collected from motion monitors used to study physical activity, sedentary behavior, and sleep, but we will demonstrate how the system could be extended for use on the increasingly rich datasets that are being collected with mobile devices and that include not only motion data, but also sensor data on location, light, audio, and person-to-person proximity. We will then refine the system, foster a community of crowd game players interested in citizen science, and release the source code to the system as an open source project so that other researchers can adapt the technique for their own work.
 描述(由申请人提供):从移动的手机和其他可穿戴传感器被动收集的纵向传感器数据将通过允许研究人员使用“大数据”来改变行为科学,但在人的层面上,了解行为和相关的环境暴露如何影响健康结果。计算机将分析个人层面的数据流,以实现前所未有的个人层面的研究和干预精度。这种类型的精准医学使科学和医学能够针对特定个体的基因组成,过去和现在的情况以及行为健康暴露。移动的手机、智能手表和常见的健身设备已经能够生成丰富的行为数据,但开发使用最新机器学习算法解释原始数据的算法需要实用的策略来注释大型数据集。我们建议开发和测试的可行性和可用性的移动的和在线基于众包的系统,用于清洁和注释从运动传感器,移动的手机,和其他移动的设备收集的行为数据。我们的目标是演示玩移动的和在线游戏的个人-“人群”-如何集体地、负担得起地、增量地清理并向从个人被动收集的原始传感器数据添加重要的元数据,类似于从人群规模的监测研究中收集的数据(例如,国家健康和营养检查调查(NHANES)和英国生物银行)和那些计划用于研究,如白宫的精准医学倡议。因此,玩游戏的人群将大大提高为各种科学研究收集的数据集的效用。我们将在从用于研究身体活动、久坐行为和睡眠的运动监视器收集的数据集上验证我们的原型系统,但我们将演示如何扩展该系统以用于越来越丰富的数据集,这些数据集是通过移动的设备收集的,不仅包括运动数据,还包括位置、光线、音频和人与人之间的接近度等传感器数据。然后,我们将完善系统,培养一个对公民科学感兴趣的群体游戏玩家社区,并将源代码作为开源项目发布到系统中,以便其他研究人员可以将该技术应用于自己的工作。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

STEPHEN S INTILLE其他文献

STEPHEN S INTILLE的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('STEPHEN S INTILLE', 18)}}的其他基金

Accelerating the development of novel methods to measure 24-hr physical behavior
加速开发测量 24 小时身体行为的新方法
  • 批准号:
    10035078
  • 财政年份:
    2020
  • 资助金额:
    $ 29.94万
  • 项目类别:
Accelerating the development of novel methods to measure 24-hr physical behavior
加速开发测量 24 小时身体行为的新方法
  • 批准号:
    10460236
  • 财政年份:
    2020
  • 资助金额:
    $ 29.94万
  • 项目类别:
Accelerating the development of novel methods to measure 24-hr physical behavior
加速开发测量 24 小时身体行为的新方法
  • 批准号:
    10687994
  • 财政年份:
    2020
  • 资助金额:
    $ 29.94万
  • 项目类别:
Accelerating the development of novel methods to measure 24-hr physical behavior
加速开发测量 24 小时身体行为的新方法
  • 批准号:
    10208835
  • 财政年份:
    2020
  • 资助金额:
    $ 29.94万
  • 项目类别:
Enabling Population-Scale Physical Activity Measurement on Common Mobile Phones
在普通手机上实现人口规模的身体活动测量
  • 批准号:
    7620388
  • 财政年份:
    2007
  • 资助金额:
    $ 29.94万
  • 项目类别:
Enabling Population-Scale Physical Activity Measurement on Common Mobile Phones
在普通手机上实现人口规模的身体活动测量
  • 批准号:
    7340826
  • 财政年份:
    2007
  • 资助金额:
    $ 29.94万
  • 项目类别:
Enabling Population-Scale Physical Activity Measurement on Common Mobile Phones
在普通手机上实现人口规模的身体活动测量
  • 批准号:
    7490202
  • 财政年份:
    2007
  • 资助金额:
    $ 29.94万
  • 项目类别:
Enabling Population-Scale Physical Activity Measurement on Common Mobile Phones
在普通手机上实现人口规模的身体活动测量
  • 批准号:
    7489819
  • 财政年份:
    2007
  • 资助金额:
    $ 29.94万
  • 项目类别:
Enabling Population-Scale Physical Activity Measurement on Common Mobile Phones
在普通手机上实现人口规模的身体活动测量
  • 批准号:
    7915037
  • 财政年份:
    2007
  • 资助金额:
    $ 29.94万
  • 项目类别:
Enabling Population-Scale Physical Activity Measurement on Common Mobile Phones
在普通手机上实现人口规模的身体活动测量
  • 批准号:
    7895863
  • 财政年份:
    2007
  • 资助金额:
    $ 29.94万
  • 项目类别:

相似海外基金

DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
  • 批准号:
    EP/Y029089/1
  • 财政年份:
    2024
  • 资助金额:
    $ 29.94万
  • 项目类别:
    Research Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
  • 批准号:
    2337776
  • 财政年份:
    2024
  • 资助金额:
    $ 29.94万
  • 项目类别:
    Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
  • 批准号:
    2338816
  • 财政年份:
    2024
  • 资助金额:
    $ 29.94万
  • 项目类别:
    Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
  • 批准号:
    2338846
  • 财政年份:
    2024
  • 资助金额:
    $ 29.94万
  • 项目类别:
    Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
  • 批准号:
    2348261
  • 财政年份:
    2024
  • 资助金额:
    $ 29.94万
  • 项目类别:
    Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
  • 批准号:
    2348346
  • 财政年份:
    2024
  • 资助金额:
    $ 29.94万
  • 项目类别:
    Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
  • 批准号:
    2348457
  • 财政年份:
    2024
  • 资助金额:
    $ 29.94万
  • 项目类别:
    Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
  • 批准号:
    2404989
  • 财政年份:
    2024
  • 资助金额:
    $ 29.94万
  • 项目类别:
    Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
  • 批准号:
    2339310
  • 财政年份:
    2024
  • 资助金额:
    $ 29.94万
  • 项目类别:
    Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
  • 批准号:
    2339669
  • 财政年份:
    2024
  • 资助金额:
    $ 29.94万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了