A toolkit for imaging and photo-manipulation of signaling in zebrafish
斑马鱼信号成像和光操作工具包
基本信息
- 批准号:8848836
- 负责人:
- 金额:$ 59.93万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2012
- 资助国家:美国
- 起止时间:2012-08-01 至 2016-05-31
- 项目状态:已结题
- 来源:
- 关键词:ActinsActive SitesAddressAmino AcidsAnimalsAreaBiologyBiosensorCCI-779Catalytic DomainCell CommunicationCellsCellular biologyCollaborationsCommunitiesCyclic AMP-Dependent Protein KinasesDataDevelopmentDevelopmental BiologyDiseaseEngineeringEpithelialEpithelial CellsFishesFocal Adhesion Kinase 1GenerationsGoalsGuanosine Triphosphate PhosphohydrolasesHRAS geneHealthHeterodimerizationImageKRAS2 geneKineticsLaboratoriesLeukocytesLifeLightLong-Term EffectsMAP Kinase GeneMAPK1 geneMEKsMammalian CellMembraneMolecular ModelsMovementMutationMyosin Light Chain KinaseOncogenicOpticsOrganOxygenPathogenesisPeptidesPhosphorylationPhosphotransferasesPhysiologicalPhysiologyProtein DynamicsProtein-Serine-Threonine KinasesProteinsReportingResearchResearch PersonnelResolutionRouteSignal TransductionSirolimusSpecificitySystemTechniquesTertiary Protein StructureTestingTissuesTranslatingTyrosineUniversitiesWisconsinWorkZebrafishanalogbasecell motilitycell typedesignepithelial to mesenchymal transitionin vivoinsightinstrumentationmolecular modelingnew technologynovelnovel strategiesoptogeneticssmall moleculesrc-Family Kinasessuccesstoolvoltagezebrafish development
项目摘要
DESCRIPTION (provided by applicant): The goal of the proposed research is to provide new tools to quantify and manipulate signaling in living zebrafish. The use of fluorescent biosensors, and more recently photomanipulation of protein activity, has generated a revolution in cell biology. The challenge has been to apply these tools for use in live animals. Our recent study highlighted the development and application of novel optogenetic techniques to manipulate and analyze leukocyte movements in vivo during zebrafish development, and we have developed new biosensor designs that can report conformational changes and phosphorylation of endogenous proteins. By building on this work, we propose to generate not only specific new tools for the zebrafish research community, but new approaches that can be applied broadly for unprecedented insight into tissue and organ physiology in live animals. We will focus on 1) fluorescent biosensors optimized for living fish, using new approaches enabling high throughput biosensor generation and substantially reduced physiological perturbation 2) the ability to activate or inhibit proteins in specific zebrafish cells with light, and 3) rendering kinases susceptible to small molecules for activation in vivo with high specificity. We will make these tools available to the zebrafish research community by using the Gal4/UAS system optimized for zebrafish. The new technologies will be validated and tested by addressing physiologically relevant questions regarding epithelial to mesenchymal transition (EMT). We propose the following aims: Aim 1. Develop fluorescent biosensors to quantify the spatio-temporal dynamics of protein activity in zebrafish, using novel designs with greatly enhanced sensitivity and reduced physiological perturbation. Aim 2. Develop the ability to regulate protein activity in livig zebrafish with light, enabling localized changes in activity with subcellular and seconds resolution. Aim 3. Develop a broadly applicable approach to render kinases responsive to membrane permeable small molecules or light, with essentially absolute specificity. This work is possible because we are combining diverse expertise from two investigators who have jointly developed this proposal based on their ongoing and productive collaboration. Dr. Huttenlocher has expertise in cell motility, zebrafish biology and imaging, and Dr. Hahn has focused his laboratory on the development of new molecules and approaches to study signaling and motility in living cells. The long term goal of this work is to bring the revolution in cell biology and cel signaling in vivo, thereby enabling application to broad areas of developmental biology and disease pathogenesis.
描述(由申请人提供):拟议研究的目标是提供新的工具来量化和操纵活斑马鱼中的信号。荧光生物传感器的使用,以及最近对蛋白质活性的光操纵,已经在细胞生物学中产生了一场革命。挑战在于将这些工具应用于活体动物。我们最近的研究强调了新型光遗传学技术的发展和应用,以操纵和分析斑马鱼发育过程中体内白细胞的运动,我们已经开发出新的生物传感器设计,可以报告内源性蛋白质的构象变化和磷酸化。通过建立在这项工作的基础上,我们建议不仅为斑马鱼研究界产生特定的新工具,而且可以广泛应用于对活体动物组织和器官生理学的前所未有的洞察的新方法。我们将专注于1)针对活鱼优化的荧光生物传感器,使用新方法实现高通量生物传感器生成和大幅减少的生理扰动2)用光激活或抑制特定斑马鱼细胞中蛋白质的能力,以及3)使激酶对小分子敏感,以高特异性在体内激活。我们将通过使用针对斑马鱼优化的Gal 4/UAS系统,为斑马鱼研究社区提供这些工具。新技术将通过解决有关上皮向间质转化(EMT)的生理学相关问题进行验证和测试。我们提出以下目标:目标1。开发荧光生物传感器,以量化斑马鱼蛋白质活性的时空动态,使用新的设计,大大提高了灵敏度和减少生理干扰。目标2.开发利用光调节livig斑马鱼蛋白质活性的能力,实现亚细胞和秒级分辨率的活性局部变化。目标3。开发一种广泛适用的方法,使激酶对膜渗透性小分子或光产生反应,基本上具有绝对的特异性。这项工作是可能的,因为我们正在结合来自两名研究人员的不同专业知识,他们基于持续和富有成效的合作共同制定了这一提案。Huttenlocher博士在细胞运动、斑马鱼生物学和成像方面拥有专业知识,Hahn博士的实验室专注于开发新分子和方法来研究活细胞中的信号传导和运动。这项工作的长期目标是在体内带来细胞生物学和细胞信号传导的革命,从而使其能够应用于发育生物学和疾病发病机制的广泛领域。
项目成果
期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Optogenetic approaches to cell migration and beyond.
- DOI:10.1016/j.ceb.2014.08.004
- 发表时间:2014-10
- 期刊:
- 影响因子:7.5
- 作者:Weitzman M;Hahn KM
- 通讯作者:Hahn KM
Light-induced nuclear export reveals rapid dynamics of epigenetic modifications.
- DOI:10.1038/nchembio.2068
- 发表时间:2016-06
- 期刊:
- 影响因子:14.8
- 作者:Yumerefendi H;Lerner AM;Zimmerman SP;Hahn K;Bear JE;Strahl BD;Kuhlman B
- 通讯作者:Kuhlman B
An optogenetic tool for the activation of endogenous diaphanous-related formins induces thickening of stress fibers without an increase in contractility.
用于激活内源性透明相关福明的光遗传学工具可诱导应力纤维增厚而不增加收缩性。
- DOI:10.1002/cm.21115
- 发表时间:2013
- 期刊:
- 影响因子:0
- 作者:Rao,MeghaVaman;Chu,Pei-Hsuan;Hahn,KlausMichael;Zaidel-Bar,Ronen
- 通讯作者:Zaidel-Bar,Ronen
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Klaus M. Hahn其他文献
Snapsense reveals the spatiotemporal dynamics of GTPase regulatory networks in live cells
- DOI:
10.1016/j.bpj.2023.11.2520 - 发表时间:
2024-02-08 - 期刊:
- 影响因子:
- 作者:
Saygin Gulec;Bei Liu;Timothy C. Elston;Klaus M. Hahn - 通讯作者:
Klaus M. Hahn
Generation of a Light Inhibited Src Kinase through Insertion of LOV into the Catalytic Domain
- DOI:
10.1016/j.bpj.2012.11.3750 - 发表时间:
2013-01-29 - 期刊:
- 影响因子:
- 作者:
Pei-Hsuan Chu;Andrei V. Karginov;David G. Shirvanyants;Nikolay V. Dokholyan;Klaus M. Hahn - 通讯作者:
Klaus M. Hahn
Rapid and Extreme Low-light Superresolution Imaging via Artificial Intelligence
- DOI:
10.1016/j.bpj.2019.11.1028 - 发表时间:
2020-02-07 - 期刊:
- 影响因子:
- 作者:
Bei Liu;Luhong Jin;Bowei Dong;Ruiyan Song;Fenqiang Zhao;Stephen Hahn;Timothy C. Elston;Yingke Xu;Klaus M. Hahn - 通讯作者:
Klaus M. Hahn
A long-wavelength biolabeling reagent based on the oxonol fluorophore
基于 oxonol 荧光团的长波长生物标记试剂
- DOI:
- 发表时间:
1995 - 期刊:
- 影响因子:2.7
- 作者:
P. Southwick;Klaus M. Hahn;J. Chao;P. Perry;A. Wagman;M. Wagner;A. Waggoner - 通讯作者:
A. Waggoner
Long-Range Inhibitory Signaling Ensures Single Axon formation
长程抑制信号传导确保单轴突形成
- DOI:
- 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
Tetsuya Takano;Mengya Wu;Shinichi Nakamuta;Honda Naoki;Naruki Ishizawa;Takashi Namba;Takashi Watanabe;Chundi Xu;Tomonari Hamaguchi;Yoshimitsu Yura;Mutsuki Amano;Klaus M. Hahn;Kozo Kaibuchi - 通讯作者:
Kozo Kaibuchi
Klaus M. Hahn的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Klaus M. Hahn', 18)}}的其他基金
Dissecting signaling in vivo via precise control and visualization of protein activity
通过蛋白质活性的精确控制和可视化剖析体内信号传导
- 批准号:
10626879 - 财政年份:2017
- 资助金额:
$ 59.93万 - 项目类别:
Dissecting signaling in vivo via precise control and visualization of protein activity
通过蛋白质活性的精确控制和可视化剖析体内信号传导
- 批准号:
9904706 - 财政年份:2017
- 资助金额:
$ 59.93万 - 项目类别:
Dissecting signaling in vivo via precise control and visualization of protein activity
通过蛋白质活性的精确控制和可视化剖析体内信号传导
- 批准号:
10406708 - 财政年份:2017
- 资助金额:
$ 59.93万 - 项目类别:
Spatio-temporal dynamics of GEF-GTPase networks
GEF-GTPase 网络的时空动态
- 批准号:
9346609 - 财政年份:2013
- 资助金额:
$ 59.93万 - 项目类别:
Spatio-temporal dynamics of GEF-GTPase networks
GEF-GTPase 网络的时空动态
- 批准号:
9127980 - 财政年份:2013
- 资助金额:
$ 59.93万 - 项目类别:
Spatiotemporal Control of the Epigenome via Photoactivatable Nuclear Localization
通过光激活核定位对表观基因组的时空控制
- 批准号:
8860166 - 财政年份:2013
- 资助金额:
$ 59.93万 - 项目类别:
Spatio-temporal dynamics of GEF-GTPase networks
GEF-GTPase 网络的时空动态
- 批准号:
8744288 - 财政年份:2013
- 资助金额:
$ 59.93万 - 项目类别:
Spatio-temporal dynamics of GEF-GTPase networks
GEF-GTPase 网络的时空动态
- 批准号:
8415194 - 财政年份:2013
- 资助金额:
$ 59.93万 - 项目类别:
Spatiotemporal Control of the Epigenome via Photoactivatable Nuclear Localization
通过光激活核定位对表观基因组的时空控制
- 批准号:
8642354 - 财政年份:2013
- 资助金额:
$ 59.93万 - 项目类别:
A toolkit for imaging and photo-manipulation of signaling in zebrafish
斑马鱼信号成像和光操作工具包
- 批准号:
8332584 - 财政年份:2012
- 资助金额:
$ 59.93万 - 项目类别:
相似海外基金
Collaborative Research: Beyond the Single-Atom Paradigm: A Priori Design of Dual-Atom Alloy Active Sites for Efficient and Selective Chemical Conversions
合作研究:超越单原子范式:双原子合金活性位点的先验设计,用于高效和选择性化学转化
- 批准号:
2334970 - 财政年份:2024
- 资助金额:
$ 59.93万 - 项目类别:
Standard Grant
NSF-BSF: Towards a Molecular Understanding of Dynamic Active Sites in Advanced Alkaline Water Oxidation Catalysts
NSF-BSF:高级碱性水氧化催化剂动态活性位点的分子理解
- 批准号:
2400195 - 财政年份:2024
- 资助金额:
$ 59.93万 - 项目类别:
Standard Grant
Collaborative Research: Beyond the Single-Atom Paradigm: A Priori Design of Dual-Atom Alloy Active Sites for Efficient and Selective Chemical Conversions
合作研究:超越单原子范式:双原子合金活性位点的先验设计,用于高效和选择性化学转化
- 批准号:
2334969 - 财政年份:2024
- 资助金额:
$ 59.93万 - 项目类别:
Standard Grant
Mechanochemical synthesis of nanocarbon and design of active sites for oxygen reducton/evolution reactions
纳米碳的机械化学合成和氧还原/演化反应活性位点的设计
- 批准号:
23K04919 - 财政年份:2023
- 资助金额:
$ 59.93万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Creation of porous inorganic frameworks with controlled structure of metal active sites by the building block method.
通过积木法创建具有金属活性位点受控结构的多孔无机框架。
- 批准号:
22KJ2957 - 财政年份:2023
- 资助金额:
$ 59.93万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Catalysis of Juxaposed Active Sites Created in Nanospaces and Their Applications
纳米空间中并置活性位点的催化及其应用
- 批准号:
23K04494 - 财政年份:2023
- 资助金额:
$ 59.93万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Generation of carbon active sites by modifying the oxygen containing functional groups and structures of carbons for utilizing to various catalytic reactions.
通过修饰碳的含氧官能团和结构来产生碳活性位点,用于各种催化反应。
- 批准号:
23K13831 - 财政年份:2023
- 资助金额:
$ 59.93万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
CAREER: CAS: Understanding the Chemistry of Palladium and Silyl Compounds to Design Catalyst Active Sites
职业:CAS:了解钯和甲硅烷基化合物的化学性质以设计催化剂活性位点
- 批准号:
2238379 - 财政年份:2023
- 资助金额:
$ 59.93万 - 项目类别:
Continuing Grant
CAS: Collaborative Research: Tailoring the Distribution of Transient vs. Dynamic Active Sites in Solid-Acid Catalysts and Their Impacts on Chemical Conversions
CAS:合作研究:定制固体酸催化剂中瞬时活性位点与动态活性位点的分布及其对化学转化的影响
- 批准号:
2154399 - 财政年份:2022
- 资助金额:
$ 59.93万 - 项目类别:
Standard Grant
Engineering of Active Sites in Heterogeneous Catalysts for Sustainable Chemical and Fuel Production.
用于可持续化学和燃料生产的多相催化剂活性位点工程。
- 批准号:
RGPIN-2019-06633 - 财政年份:2022
- 资助金额:
$ 59.93万 - 项目类别:
Discovery Grants Program - Individual