Developing Enabling PET-CT Image Analysis Tools for Predicting Response in Radiation Cancer Therapy
开发用于预测癌症放射治疗反应的 PET-CT 图像分析工具
基本信息
- 批准号:9185750
- 负责人:
- 金额:$ 16.58万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-09-06 至 2018-07-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAlgorithmsAutomobile DrivingBindingBiological Neural NetworksClinicClinicalClinical TrialsDataDependenceDevelopmentDiagnostic Neoplasm StagingEvaluationExcisionGraphHandHealthHeterogeneityImageImage AnalysisIndividualInformaticsInheritedIntraobserver VariabilityLearningManualsMedicalMethodologyMethodsModalityNIH Program AnnouncementsNatureOutcomePET/CT scanPathologyPerformancePhysicsPhysiologicalPhysiologyPositron-Emission TomographyPrediction of Response to TherapyPredictive ValueProtocols documentationRadiation OncologyRadiation therapyReportingResearchSamplingScanningSchemeSliceSourceTechniquesTestingTherapeuticTimeTomography, Computed, ScannersTumor VolumeTumor stageUncertaintyWorkX-Ray Computed Tomographyanticancer researchbasecancer radiation therapycancer therapyclinical careclinical practicedesignfluorodeoxyglucose positron emission tomographyimage processingimage reconstructionimage registrationimaging Segmentationimaging modalityimprovedimproved outcomeinnovationnoveloutcome forecastpredicting responseprognosticprognostic valueradiation responseresponsetooltreatment planningtreatment responsetumoruptakeusability
项目摘要
ABSTRACT
The integrated Positron Emission Tomography and Computed Tomography (PET-CT) has become an
indispensable tool in modern cancer therapy. Accurate target delineation is an inevitable first step
towards fully making use of the potentials of PET-CT. However, in current clinical practice, this
important task is typically performed visually on a slice-by-slice basis with very limited support of
automated segmentation tools. The state-of-the-art PET-CT segmentation techniques rely on either a
single modality or the fused PET-CT data, which may not fully take advantage of both modalities, thus
compromising the segmentation accuracy. In addition, the state-of-the-art therapeutic response
prediction methods highly rely on the handcrafted image features and parameters, which poses a
limiting factor for their wide use in clinic. This research proposes to develop fast and objective PET-CT
analysis methods to facilitate the utilization of the dual modality imaging for both large-scale clinical
trial research and daily clinical care. The novel feature of the proposed methods is the first time to
introduce co-segmentation for PET-CT tumor delineation, which recognizes the contour difference of
tumors in PET from those in CT. New PET-CT specific priors will be explored and incorporated into
the segmentation framework, further improving the accuracy of segmentation. The proposed
response prediction method is built on the accurate tumor definition from our PET-CT co-
segmentation approach, with an innovative design of a convolutional neural network for automatically
learning hierarchical features directly from the PET-CT scans, leading to highly accurate prediction of
response. The developed methods will be tested in comparison with state-of-the-art methods utilized
today. The performance of the methods will be statistically assessed in data samples of sufficient
sizes.
摘要
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Xiaodong Wu其他文献
Xiaodong Wu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Xiaodong Wu', 18)}}的其他基金
Developing Enabling PET-CT Image Analysis Tools for Predicting Response in Radiation Cancer Therapy
开发用于预测癌症放射治疗反应的 PET-CT 图像分析工具
- 批准号:
9346621 - 财政年份:2016
- 资助金额:
$ 16.58万 - 项目类别:
Developing a Treatment Planning System for Next Generation Rotating-Shield Brachytherapy
开发下一代旋转屏蔽近距离放射治疗的治疗计划系统
- 批准号:
9316911 - 财政年份:2015
- 资助金额:
$ 16.58万 - 项目类别:
Developing a Treatment Planning System for Next Generation Rotating-Shield Brachytherapy
开发下一代旋转屏蔽近距离放射治疗的治疗计划系统
- 批准号:
9308680 - 财政年份:2015
- 资助金额:
$ 16.58万 - 项目类别:
Developing a Treatment Planning System for Next Generation Rotating-Shield Brachytherapy
开发下一代旋转屏蔽近距离放射治疗的治疗计划系统
- 批准号:
9139441 - 财政年份:2015
- 资助金额:
$ 16.58万 - 项目类别:
Accurate Target Delineation and Motion Tracking to Improve IMRT Effectiveness
准确的目标描绘和运动跟踪可提高 IMRT 有效性
- 批准号:
7472568 - 财政年份:2007
- 资助金额:
$ 16.58万 - 项目类别:
Accurate Target Delineation and Motion Tracking to Improve IMRT Effectiveness
准确的目标描绘和运动跟踪可提高 IMRT 有效性
- 批准号:
8088049 - 财政年份:2007
- 资助金额:
$ 16.58万 - 项目类别:
Accurate Target Delineation and Motion Tracking to Improve IMRT Effectiveness
准确的目标描绘和运动跟踪可提高 IMRT 有效性
- 批准号:
7259200 - 财政年份:2007
- 资助金额:
$ 16.58万 - 项目类别:
Accurate Target Delineation and Motion Tracking to Improve IMRT Effectiveness
准确的目标描绘和运动跟踪可提高 IMRT 有效性
- 批准号:
7625151 - 财政年份:2007
- 资助金额:
$ 16.58万 - 项目类别:
相似海外基金
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 16.58万 - 项目类别:
Research Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
$ 16.58万 - 项目类别:
Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
- 批准号:
2338816 - 财政年份:2024
- 资助金额:
$ 16.58万 - 项目类别:
Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
$ 16.58万 - 项目类别:
Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
- 批准号:
2348261 - 财政年份:2024
- 资助金额:
$ 16.58万 - 项目类别:
Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
- 批准号:
2348346 - 财政年份:2024
- 资助金额:
$ 16.58万 - 项目类别:
Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
- 批准号:
2348457 - 财政年份:2024
- 资助金额:
$ 16.58万 - 项目类别:
Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
$ 16.58万 - 项目类别:
Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 16.58万 - 项目类别:
Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
- 批准号:
2339669 - 财政年份:2024
- 资助金额:
$ 16.58万 - 项目类别:
Continuing Grant