Quorum: An Open Platform for Crowdsourcing Visual Data Analysis

Quorum:众包可视化数据分析的开放平台

基本信息

  • 批准号:
    9077726
  • 负责人:
  • 金额:
    $ 28.05万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2016
  • 资助国家:
    美国
  • 起止时间:
    2016-05-15 至 2018-04-30
  • 项目状态:
    已结题

项目摘要

 DESCRIPTION (provided by applicant): Recent advancements in biomedical research, particularly the development of high- throughput methodologies, have allowed researchers to collect huge quantities of data at prodigious rates. For data that is visual or graphical in nature data analysis often poses a significant challenge. Segmentation or tracing of specific features within microscopic images, for example, is often difficult to completely automate due to noise and variations in sample quality and image collection. Images must often be analyzed manually, which is often a laborious and time consuming process. In order to address this issue, we will develop an open platform for crowdsourcing visual data analysis called Quorum. Quorum is an interactive, engaging painting game that allows members of the public to trace images or other visual data. As an open platform, Quorum will allow any researcher to upload images using a custom web-based interface and specify a segmentation challenge. After the images have been traced by game users, the researchers can retrieve their analyzed data on the Quorum website. Quorum will be free to use and open-source, allowing anyone to play or modify the platform.
 描述(由申请人提供):生物医学研究的最新进展,特别是高通量方法学的发展,使研究人员能够以惊人的速度收集大量数据。对于本质上是视觉或图形的数据,数据分析通常构成重大挑战。例如,由于样本质量和图像收集中的噪声和变化,显微图像内的特定特征的分割或跟踪通常难以完全自动化。通常必须手动分析图像,这通常是一个费力且耗时的过程。为了解决这个问题,我们将开发一个名为Quorum的众包可视化数据分析开放平台。Quorum是一个互动的,引人入胜的绘画游戏,允许公众成员跟踪图像或其他视觉数据。作为一个开放的平台,Quorum将允许任何研究人员使用基于Web的自定义界面上传图像,并指定分割挑战。在游戏用户追踪图像后,研究人员可以在Quorum网站上检索他们的分析数据。Quorum将免费使用和开源,允许任何人玩或修改平台。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Janet Iwasa其他文献

Janet Iwasa的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Janet Iwasa', 18)}}的其他基金

Quorum: An Open Platform for Crowdsourcing Visual Data Analysis
Quorum:众包可视化数据分析的开放平台
  • 批准号:
    9271166
  • 财政年份:
    2016
  • 资助金额:
    $ 28.05万
  • 项目类别:

相似海外基金

REU Site: Algorithms and Optimization for Sustainability and Biology
REU 网站:可持续性和生物学的算法和优化
  • 批准号:
    2243010
  • 财政年份:
    2023
  • 资助金额:
    $ 28.05万
  • 项目类别:
    Standard Grant
Multi-resolution Molecular Dynamics Algorithms for Computational Biology
计算生物学的多分辨率分子动力学算法
  • 批准号:
    EP/V047469/1
  • 财政年份:
    2021
  • 资助金额:
    $ 28.05万
  • 项目类别:
    Research Grant
Developing novel machine learning algorithms for network biology
为网络生物学开发新颖的机器学习算法
  • 批准号:
    RGPIN-2015-06751
  • 财政年份:
    2020
  • 资助金额:
    $ 28.05万
  • 项目类别:
    Discovery Grants Program - Individual
Developing novel machine learning algorithms for network biology
为网络生物学开发新颖的机器学习算法
  • 批准号:
    RGPIN-2015-06751
  • 财政年份:
    2019
  • 资助金额:
    $ 28.05万
  • 项目类别:
    Discovery Grants Program - Individual
Developing novel machine learning algorithms for network biology
为网络生物学开发新颖的机器学习算法
  • 批准号:
    RGPIN-2015-06751
  • 财政年份:
    2018
  • 资助金额:
    $ 28.05万
  • 项目类别:
    Discovery Grants Program - Individual
Machine Learning Algorithms for Actionable Knowledge Discovery in Synthetic Biology
合成生物学中可操作知识发现的机器学习算法
  • 批准号:
    2132169
  • 财政年份:
    2018
  • 资助金额:
    $ 28.05万
  • 项目类别:
    Studentship
AF: Medium: Collaborative Research: Sequential and Parallel Algorithms for Approximate Sequence Matching with Applications to Computational Biology
AF:媒介:协作研究:近似序列匹配的顺序和并行算法及其在计算生物学中的应用
  • 批准号:
    1704552
  • 财政年份:
    2017
  • 资助金额:
    $ 28.05万
  • 项目类别:
    Standard Grant
Developing novel machine learning algorithms for network biology
为网络生物学开发新颖的机器学习算法
  • 批准号:
    RGPIN-2015-06751
  • 财政年份:
    2017
  • 资助金额:
    $ 28.05万
  • 项目类别:
    Discovery Grants Program - Individual
Workshop on Future Directions for Algorithms in Biology
生物学算法未来方向研讨会
  • 批准号:
    1748493
  • 财政年份:
    2017
  • 资助金额:
    $ 28.05万
  • 项目类别:
    Standard Grant
AF: Medium: Collaborative Research: Sequential and Parallel Algorithms for Approximate Sequence Matching with Applications to Computational Biology
AF:媒介:协作研究:近似序列匹配的顺序和并行算法及其在计算生物学中的应用
  • 批准号:
    1703489
  • 财政年份:
    2017
  • 资助金额:
    $ 28.05万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了