An In Vivo Voltammetric Serotonin Biomarker for Antidepressant Efficacy

抗抑郁功效的体内伏安血清素生物标志物

基本信息

项目摘要

 DESCRIPTION (provided by applicant): There are no reliable screening tools that predict clinical outcome in the preclinical stages of antidepressant drug development, this is an analytical shortcoming that has led to a recent decline in resources for antidepressant drug discovery. Given that by 2030 depression is predicted to become one of the leading global disease burdens, it is particularly pertinent to create analytical tools that accurately screen the efficacy of antidepressant therapies. The long-term goal of the proposed research is to understand how antidepressants modulate the serotonin system thereby establishing a serotonin biomarker for early stage drug screening. The objectives of this proposal are to a) enable precise measurements of serotonin's basal and evoked levels in vivo in the mouse hippocampus, b) establish the mechanisms that control extracellular serotonin in healthy and depressed mice and c) correlate chemical patterns in the way that different antidepressants modulate serotonin to clinical efficacy. Our preliminary data strongly support our proposed objectives. We have made significant progress in making the first measurements of basal and evoked serotonin in the hippocampus with fast scan cyclic voltammetry and a novel method, fast scan controlled adsorption voltammetry. Furthermore, we measured basal and evoked serotonin in depressed mouse models and found that serotonin levels are higher in depressed mice, proposing a mechanism for this finding via computational modeling. Finally, we mathematically correlated serotonin's extracellular response after different antidepressants to clinical efficacy and made an accurate prediction of efficacy for a known compound. This preliminary data allows us to make the central hypothesis that antidepressants influence extracellular levels of serotonin via different mechanisms, giving rise to unique "serotonin signatures", which can be used to predict their likely degree of clinical efficacy. The rationale i that by correlating chemical serotonin patterns to clinical efficacy, a `serotonin biomarker' can identify the most clinically efficacious compounds. We take an interdisciplinary approach to test the central hypothesis via three specific aims: 1. Perform Fundamental FSCV Measurements of Serotonin's Ambient and Evoked Chemistry in the Hippocampus. 2. Establish Mechanisms Regulating In Vivo Extracellular Serotonin Levels in Healthy and Depressed Animal Models. 3. Correlate the Ability of Antidepressants to Influence Extracellular Serotonin (Ambient and Evoked) to Clinical Efficacy. The approach is innovative because it brings together advanced analytical techniques, mathematics and animal behavior to tackle important analytical challenges. The proposed research is significant because it can ultimately provide a means to screen antidepressants via a serotonin biomarker. Having an early stage screening tool is a powerful impetus for drug discoverers to resume their efforts in improving antidepressant therapies, benefiting individuals, society and the economy. The research will also have impact on a much broader research agenda. Serotonin measurement tools and working models of in vivo serotonin mechanisms can open and advance entire new lines of serotonin-related research.


项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Parastoo Hashemi其他文献

Parastoo Hashemi的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Parastoo Hashemi', 18)}}的其他基金

Voltammetric determination of neuronal serotonin and histamine co-regulation
伏安法测定神经元血清素和组胺的共同调节
  • 批准号:
    9244143
  • 财政年份:
    2016
  • 资助金额:
    $ 34.06万
  • 项目类别:

相似海外基金

Unraveling Adverse Effects of Checkpoint Inhibitors Using iPSC-derived Cardiac Organoids
使用 iPSC 衍生的心脏类器官揭示检查点抑制剂的副作用
  • 批准号:
    10591918
  • 财政年份:
    2023
  • 资助金额:
    $ 34.06万
  • 项目类别:
Optimization of mRNA-LNP vaccine for attenuating adverse effects and analysis of mechanism behind adverse effects
mRNA-LNP疫苗减轻不良反应的优化及不良反应机制分析
  • 批准号:
    23K15383
  • 财政年份:
    2023
  • 资助金额:
    $ 34.06万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Elucidation of adverse effects of combined exposure to low-dose chemicals in the living environment on allergic diseases and attempts to reduce allergy
阐明生活环境中低剂量化学品联合暴露对过敏性疾病的不良影响并尝试减少过敏
  • 批准号:
    23H03556
  • 财政年份:
    2023
  • 资助金额:
    $ 34.06万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Green tea-based nano-enhancer as an adjuvant for amplified efficacy and reduced adverse effects in anti-angiogenic drug treatments
基于绿茶的纳米增强剂作为抗血管生成药物治疗中增强疗效并减少不良反应的佐剂
  • 批准号:
    23K17212
  • 财政年份:
    2023
  • 资助金额:
    $ 34.06万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Effects of Tobacco Heating System on the male reproductive function and towards to the reduce of the adverse effects.
烟草加热系统对男性生殖功能的影响以及减少不利影响。
  • 批准号:
    22H03519
  • 财政年份:
    2022
  • 资助金额:
    $ 34.06万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Mitigating the Adverse Effects of Ultrafines in Pressure Filtration of Oil Sands Tailings
减轻油砂尾矿压力过滤中超细粉的不利影响
  • 批准号:
    563657-2021
  • 财政年份:
    2022
  • 资助金额:
    $ 34.06万
  • 项目类别:
    Alliance Grants
1/4-Deciphering Mechanisms of ECT Outcomes and Adverse Effects (DECODE)
1/4-破译ECT结果和不良反应的机制(DECODE)
  • 批准号:
    10521849
  • 财政年份:
    2022
  • 资助金额:
    $ 34.06万
  • 项目类别:
4/4-Deciphering Mechanisms of ECT Outcomes and Adverse Effects (DECODE)
4/4-破译ECT结果和不良反应的机制(DECODE)
  • 批准号:
    10671022
  • 财政年份:
    2022
  • 资助金额:
    $ 34.06万
  • 项目类别:
2/4 Deciphering Mechanisms of ECT Outcomes and Adverse Effects (DECODE)
2/4 ECT 结果和不良反应的破译机制(DECODE)
  • 批准号:
    10670918
  • 财政年份:
    2022
  • 资助金额:
    $ 34.06万
  • 项目类别:
Adverse Effects of Using Laser Diagnostics in High-Speed Compressible Flows
在高速可压缩流中使用激光诊断的不利影响
  • 批准号:
    RGPIN-2018-04753
  • 财政年份:
    2022
  • 资助金额:
    $ 34.06万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了