Smartphone-Based Open Research Platform for Hearing Improvement Studies
基于智能手机的听力改善研究开放研究平台
基本信息
- 批准号:9153158
- 负责人:
- 金额:$ 38.35万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-07-01 至 2021-06-30
- 项目状态:已结题
- 来源:
- 关键词:AcousticsAlgorithmsAmplifiersAndroidAudiologyBionicsCellular PhoneClassificationClinical ResearchCochlear ImplantsCodeDetectionDevelopmentDevicesEarEnvironmentEvaluationEvaluation ResearchFamilyFeedbackFuture GenerationsGoalsHearingHearing AidsIndustryInstitutesLettersLibrariesNoiseOutcomePerformanceProceduresProcessProgramming LanguagesPublic DomainsResearchResearch PersonnelRunningSourceSource CodeSpeechTestingTimeWireless TechnologyWritingbasecost effectivenessflexibilityhandheld mobile devicehearing impairmentimprovedmobile computingopen sourceportabilityrepositoryresearch and developmentresearch clinical testingresponsesignal processingsoftware developmentsoundspeech processingweb site
项目摘要
Smartphone-Based Open Research Platform for Hearing Improvement Studies
Summary:
Many advanced algorithms have been and are being developed in research labs to improve hearing of those
suffering from hearing loss as part of the signal processing pipelines in hearing devices including hearing aids,
cochlear implants, and sound amplifiers. Although there exist proprietary programmable platforms by hearing
device companies, currently there exists no open source, programmable and portable platform that allows
researchers to easily explore, run, and carry out clinical studies of research algorithms towards improving
users’ hearing. The objective of this project is to provide such an open source and mobile research platform
thus enabling seamless evaluation of research algorithms towards enhancing hearing of those suffering from
hearing loss. The successful completion of this project would have a significant impact on the deployment of
advanced signal processing algorithms in future generations of hearing devices as it places a programmable,
portable, flexible, and affordable research platform in the hands of researchers, audiologists, industry R&D
centers, and educators to test new/existing algorithms in realistic sound environments. As illustrated in the
figure shown, the proposed open source platform is based on smartphones or similar ARM-based mobile
devices that nearly all users already possess. Our approach involves the development of software shells to
run hearing algorithms, written in MATLAB or C, on the smartphone platform in real-time as apps in a
seamless and easy-to-use way. The outcome of this project will include: (1) a user’s guide of the proposed
open source platform describing a number of easy steps to take in order to run a research algorithm written in
MATLAB or C on a smartphone (both Android and iPhone) in real-time, (2) a public website where a repository
or library of representative speech processing algorithms source codes that go into a hearing device are
provided which can be run in real-time on smartphones, and (3) a document discussing how clinical
evaluations of these repository of representative research algorithms are conducted to provide a framework for
carrying out clinical evaluation of any research algorithm. An indication of the broad impact of the proposed
project is the support letters that our research team has received in response to the goals of this project
(Starkey and Zounds Hearing companies, andthe audiologists at Dallas Ear Institute and Family Audiology).
基于智能手机的听力改善研究开放研究平台
摘要:
研究实验室已经并正在开发许多先进的算法,以改善人们对这些算法的听力
作为包括助听器在内的助听器中的信号处理管道的一部分而遭受听力损失,
植入物和扩音器。尽管存在通过听证的专有可编程平台
设备公司,目前还没有开源、可编程和便携的平台来支持
研究人员可以轻松地探索、运行和开展临床研究,朝着改进算法的方向发展
用户的听力。这个项目的目标是提供这样一个开源的、可移动的研究平台
从而实现对研究算法的无缝评估,以增强那些患有
听力损失。该项目的成功完成将对部署
先进的信号处理算法在未来几代听力设备中放置了可编程的、
便携、灵活、经济实惠的研究平台掌握在研究人员、听力专家、行业研发人员手中
中心和教育工作者在真实的声音环境中测试新的/现有的算法。如
如图所示,提议的开源平台基于智能手机或类似的基于ARM的移动设备
几乎所有用户都已拥有的设备。我们的方法包括开发软件外壳,以
在智能手机平台上以应用程序的形式实时运行用MATLAB或C编写的听力算法
无缝、易用的方式。该项目的成果将包括:(1)拟议的
开源平台,描述了运行研究算法所需的一些简单步骤
在智能手机(包括Android和iPhone)上实时运行的MatLab或C语言,(2)公共网站上的存储库
或进入听力设备的代表性语音处理算法源代码的库是
提供可以在智能手机上实时运行的文档,以及(3)讨论如何临床的文档
对这些代表性研究算法的存储库进行了评估,以提供一个框架
对任何研究算法进行临床评估。表明了拟议中的
项目是我们的研究团队收到的响应该项目目标的支持信
(Starkey和Zound听力公司,以及达拉斯耳朵研究所和家庭听力学的听力专家)。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Issa Panahi其他文献
Issa Panahi的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Issa Panahi', 18)}}的其他基金
Smartphone-Assisted Adaptive Speech Enhancement and Auditory Training of Hearing
智能手机辅助自适应语音增强和听力训练
- 批准号:
8884694 - 财政年份:2014
- 资助金额:
$ 38.35万 - 项目类别:
相似海外基金
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
$ 38.35万 - 项目类别:
Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
- 批准号:
2338816 - 财政年份:2024
- 资助金额:
$ 38.35万 - 项目类别:
Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
$ 38.35万 - 项目类别:
Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
- 批准号:
2348261 - 财政年份:2024
- 资助金额:
$ 38.35万 - 项目类别:
Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
- 批准号:
2348346 - 财政年份:2024
- 资助金额:
$ 38.35万 - 项目类别:
Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
- 批准号:
2348457 - 财政年份:2024
- 资助金额:
$ 38.35万 - 项目类别:
Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
$ 38.35万 - 项目类别:
Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 38.35万 - 项目类别:
Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
- 批准号:
2339669 - 财政年份:2024
- 资助金额:
$ 38.35万 - 项目类别:
Continuing Grant
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 38.35万 - 项目类别:
Research Grant