Interplay between DNA repair mechanisms in human cells and extracts
人体细胞和提取物中 DNA 修复机制之间的相互作用
基本信息
- 批准号:9160527
- 负责人:
- 金额:$ 35.66万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-09-01 至 2021-05-31
- 项目状态:已结题
- 来源:
- 关键词:2&apos-deoxyadenosine8-hydroxyguanosineAgingBase Excision RepairsBindingBinding ProteinsBiological MarkersBiological ModelsCell ExtractsCellsChemicalsChronicCompetitive BindingControlled EnvironmentDNADNA DamageDNA RepairDNA lesionDefense MechanismsDeoxyguanosineDiseaseEnvironmentEquilibriumEtiologyExcisionExogenous FactorsExperimental ModelsExposure toFibroblastsGeneticGenomeGenomic InstabilityGenomicsGuanineHumanHuman GenomeImidazoleIn VitroIndividualInflammationInflammatoryInflammatory ResponseIonizing radiationLeadLesionLibrariesLinkMalignant NeoplasmsMethodsMolecular ModelsMonitorMutationNatureNerve DegenerationNitrogenNormal CellNucleotide Excision RepairOligonucleotidesOxygenPathway interactionsPatternPlayPositioning AttributePredispositionProteinsResistanceRoleSiteSurgical incisionsSystemTestingTherapeuticThymineTobacco smokeTransfectionUltraviolet RaysVirus DiseasesWorkXPA geneadductbasecancer initiationchemotherapycrosslinkdesignds-DNAexposed human populationguanidinohydantoinhuman tissueinsightinterestmolecular dynamicsmolecular modelingnucleobaseoxidationpreventrepair enzymerepairedspiroiminodihydantointumor progression
项目摘要
PROJECT SUMMARY
Chronic inflammation associated with human exposure to environmental genotoxic chemical contaminants has
been implicated in the etiology of human cancers. Chronic inflammation is characterized by an overproduction
of reactive oxygen and nitrogen species that cause damage to the cellular DNA that, if not removed by cellular
defense mechanisms, may lead to mutations and cancer. The connections between reactive chemical
intermediates, their impact on chronic inflammation, and the initiation of cancer, are of great current interest.
The primary target of oxidation in DNA is guanine, the most easily damaged nucleobase. DNA repair is a
critically important cellular defense mechanisms that plays a key role in safeguarding the genome from the
potential deleterious actions of these DNA lesions. The most important basic mechanism of removal of these
oxidatively generated forms of DNA damage from the human genome is widely assumed to be the base
excision repair (BER) system. However, we have recently discovered that another important cellular defense
mechanism, nucleotide excision repair (NER), that normally specializes in the clearing of bulky and DNA helix-
distorting adducts, is also capable of removing a number of well known oxidative DNA lesions in human cell
extract model systems. In these in vitro systems, the two repair systems compete with one another for the
some of the same DNA substrates that have been known to be BER substrates only. However, one
mechanism could also hinder the other one, and it is not known whether or how the BER and NER pathways
compete with one another since the respective protein levels and availabilities to the DNA lesion substrates
are markedly different than in the cell extracts. However, nothing is known about the possible cooperation and
competition of these two major repair pathways, BER and NER, in human cells. In aim 1, the mechanistic
aspects of the competition between the BER and NER pathways is quantitatively explored in the controlled
environment of cell extracts in which the critical individual BER and NER protein concentrations can be varied
at will; the structural requirements for susceptibility of these non-bulky oxidative DNA lesions to NER will be
examined by experimental and molecular modeling approaches honed during previous project periods.
Preliminary results indicate that the BER and NER pathways do indeed compete with one another in human
fibroblasts, and aim 2 is designed to determine the nature of the competition between BER and NER following
transfection of site-specifically modified oligonucleotide substrates into human fibroblasts with different genetic
backgrounds. A unique library of oxidative DNA lesions has been created that are either repaired by NER
only, or by BER only, or by both BER and NER mechanisms. This library of site-specifically modified DNA
repair substrates includes 8-oxoguanine, and its deeper oxidation products such as the stereoisomeric
spiroimininodihdantoins, guanidinohydantoin, a nitro-imidazole guanine oxidation product, 5’,8-cyclo-2’-
deoxypurines, and intrastrand cross-linked guanine-thymine DNA lesions.
项目摘要
与人类暴露于环境遗传毒性化学污染物相关的慢性炎症
与人类癌症的病因学有关慢性炎症的特点是过度生产
活性氧和氮的物种,造成损害的细胞DNA,如果不删除细胞
防御机制,可能导致突变和癌症。反应性化学物质
中间体、它们对慢性炎症的影响以及癌症的引发是当前非常感兴趣的。
DNA氧化的主要目标是鸟嘌呤,它是最容易被破坏的核碱基。DNA修复是
这是一种至关重要的细胞防御机制,在保护基因组免受
这些DNA损伤的潜在有害作用。最重要的基本机制,
来自人类基因组的氧化产生的DNA损伤形式被广泛认为是基础
切除修复(BER)系统。然而,我们最近发现另一种重要的细胞防御
机制,核苷酸切除修复(NER),通常专门在清除庞大的和DNA螺旋-
扭曲加合物,也能够去除人类细胞中许多众所周知的氧化DNA损伤
提取模型系统。在这些体外系统中,两种修复系统相互竞争,
一些已知仅为BER底物的相同DNA底物。不过有一
机制也可能阻碍另一个,目前还不知道是否或如何BER和NER途径
由于各自的蛋白质水平和对DNA损伤底物的可用性,
与细胞提取物中的明显不同。然而,对可能的合作一无所知,
这两个主要的修复途径,BER和NER,在人类细胞中的竞争。在目标1中,
BER和NER途径之间的竞争方面进行了定量探讨,在控制的
细胞提取物的环境,其中临界个体BER和NER蛋白浓度可以变化
这些非大体积氧化DNA损伤对NER的易感性的结构要求将是
通过在以前的项目期间磨练的实验和分子建模方法进行检查。
初步结果表明,BER和NER通路确实在人类中相互竞争,
目的2旨在确定BER和NER之间竞争的性质,
将位点特异性修饰的寡核苷酸底物转染到具有不同基因的人成纤维细胞中
背景已经创建了一个独特的氧化DNA损伤库,这些损伤要么由NER修复
或者仅通过BER,或者通过BER和NER机制两者。这个位点特异性修饰的DNA库
修复底物包括8-氧代鸟嘌呤及其更深的氧化产物,如立体异构体
螺亚氨基二海因,胍基海因,硝基咪唑鸟嘌呤氧化产物,5 ',8-环-2'-
脱氧嘌呤和链内交联鸟嘌呤-胸腺嘧啶DNA损伤。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
VLADIMIR SHAFIROVICH其他文献
VLADIMIR SHAFIROVICH的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('VLADIMIR SHAFIROVICH', 18)}}的其他基金
Reaction pathways of lipid oxyl radicals and DNA damage
脂氧自由基与DNA损伤的反应途径
- 批准号:
7095749 - 财政年份:2002
- 资助金额:
$ 35.66万 - 项目类别:
Reaction pathways of lipid oxyl radicals and DNA damage
脂氧自由基与DNA损伤的反应途径
- 批准号:
7575748 - 财政年份:2002
- 资助金额:
$ 35.66万 - 项目类别:
Reaction pathways of lipid oxyl radicals and DNA damage
脂氧自由基与DNA损伤的反应途径
- 批准号:
7367817 - 财政年份:2002
- 资助金额:
$ 35.66万 - 项目类别:
Reaction pathways of lipid oxyl radicals and DNA damage
脂氧自由基与DNA损伤的反应途径
- 批准号:
7234707 - 财政年份:2002
- 资助金额:
$ 35.66万 - 项目类别:
相似海外基金
Neurotoxicity of deoxyadenosine and neuroprotective effects of adenosine deaminase
脱氧腺苷的神经毒性和腺苷脱氨酶的神经保护作用
- 批准号:
16K08923 - 财政年份:2016
- 资助金额:
$ 35.66万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Identification and characterization of methyl-deoxyadenosine in the eukaryotic genome.
真核基因组中甲基脱氧腺苷的鉴定和表征。
- 批准号:
BB/M022994/1 - 财政年份:2015
- 资助金额:
$ 35.66万 - 项目类别:
Research Grant
MECHANISM OF CYTOTOXICITY OF DEOXYADENOSINE AND ANALOGS
脱氧腺苷及其类似物的细胞毒性机制
- 批准号:
3178061 - 财政年份:1986
- 资助金额:
$ 35.66万 - 项目类别:
MECHANISM OF CYTOTOXICITY OF DEOXYADENOSINE AND ANALOGS
脱氧腺苷及其类似物的细胞毒性机制
- 批准号:
3178065 - 财政年份:1986
- 资助金额:
$ 35.66万 - 项目类别:
MECHANISM OF CYTOTOXICITY OF DEOXYADENOSINE AND ANALOGS
脱氧腺苷及其类似物的细胞毒性机制
- 批准号:
3178066 - 财政年份:1986
- 资助金额:
$ 35.66万 - 项目类别:
MOLECULAR CLONING OF BACTERIAL DEOXYCYTIDINE/DEOXYADENOSINE KINASE
细菌脱氧胞苷/脱氧腺苷激酶的分子克隆
- 批准号:
3935271 - 财政年份:
- 资助金额:
$ 35.66万 - 项目类别:
MOLECULAR CLONING OF BACTERIAL DEOXYCYTIDINE/DEOXYADENOSINE KINASE
细菌脱氧胞苷/脱氧腺苷激酶的分子克隆
- 批准号:
3914170 - 财政年份:
- 资助金额:
$ 35.66万 - 项目类别: