Real-time volumetric specimen imager for 3D intra-operative lumpectomy margin assessment

用于 3D 术中肿瘤切除术边缘评估的实时体积标本成像仪

基本信息

  • 批准号:
    9143325
  • 负责人:
  • 金额:
    $ 22.5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2016
  • 资助国家:
    美国
  • 起止时间:
    2016-09-01 至 2018-02-28
  • 项目状态:
    已结题

项目摘要

 DESCRIPTION (provided by applicant): We propose to develop a novel volumetric specimen imager (VSI) device for significantly reducing breast lumpectomy's reoperation rate and improving outcomes. Among the annual performance of >200,000 lumpectomies in the US, up to 40%[1,2] of patients need a reoperation, when post-surgery pathology examination reveals "positive margin", indicating incomplete tumor removal. Currently physicians rely on 2D specimen imaging for assessing margin status during surgery, which cannot adequately represent the 3D margin morphology[3]. We propose a next-generation VSI device that yields fully-3D images of the specimen with isotropic resolution, which can significantly improve margin assessment and provide precise guidance for immediate re-excision before closing wound. While conventional 3D imagers requires a long scan time (15- 30min.)[4] that disrupts surgical workflow, our VSI approach is enabled by a patented algorithm[6] that allows much faster imaging by substantially cutting down the amount of data to be collected[7], which offers high resolution 3D image within 2-3 minutes. In 4-5 years we plan to introduce VSI as the new standard of care for intra-operative lumpectomy margin assessment, which may reduce the re-excision rate to ~5% without unnecessary re-excision and mastectomy, thereby dramatically reducing healthcare costs and patient inconvenience while improving cosmetic outcomes. Our hypothesis for Phase I research is that the VSI can scan typical lumpectomy specimens within 3 minutes, yielding 3D images with over 90% margin-assessment sensitivity and specificity. The Specific Aims are: (1) to verify that image-quality requirements can be met by a calibrated VSI prototype, (2) to verify that scan-time requirements can be met by optimizing VSI parameters, and (3) To verify that VSI has higher sensitivity and specificity than SR for assessing lumpectomy margins. Reaching the above Aims will firmly establish the feasibility of VSI as a next-generation tool for 3D intra- operative margin assessment, and would reduce the technical risk of Phase II work, which include (1) fully optimization of VSI performance, (2) complete integration of the VSI to surgical workflow, and (3) larger-scale evaluation of VSI's clinical benefit with 200 lumpectomy specimens. In the US, about 6,000 surgical labs performing lumpectomy create an installed base estimated at $1B, among which large teaching programs and affiliated community hospitals are our lead customers, providing an early customer base of ~$7.5M.
 描述(由申请人提供):我们提议开发一种新型体积样本成像仪(VSI)器械,用于显著降低乳房肿块切除术的再次手术率并改善结局。在美国每年进行的> 200,000例肿块切除术中,高达40%[1,2]的患者需要再次手术,此时术后病理学检查显示“阳性边缘”,表明肿瘤切除不完全。目前,医生依赖2D样本成像来评估手术期间的切缘状态,这不能充分代表3D切缘形态[3]。我们提出了下一代VSI设备,产生全三维图像的标本与各向同性的分辨率,这可以显着提高边缘评估,并提供精确的指导,立即再切除前关闭伤口。而传统的3D成像仪需要很长的扫描时间(15- 30分钟)。[4]我们的VSI方法是通过专利算法[6]实现的,该算法通过大幅减少要收集的数据量[7]来实现更快的成像,从而在2-3分钟内提供高分辨率3D图像。在4-5年内,我们计划引入VSI作为术中乳房肿瘤切除术边缘评估的新护理标准,这可能会将再次切除率降低至约5%,而无需进行不必要的再次切除和乳房切除术,从而大幅降低医疗保健成本和患者不便,同时改善美容效果。我们对I期研究的假设是VSI可以在3分钟内扫描典型的肿块切除标本,产生3D图像,边缘评估灵敏度和特异性超过90%。具体目标是:(1)验证经校准的VSI原型是否能够满足图像质量要求,(2)验证通过优化VSI参数是否能够满足扫描时间要求,以及(3)验证VSI在评估乳房肿瘤切除术边缘时的灵敏度和特异性高于SR。实现上述目标将牢固确立VSI作为下一代3D术中切缘评估工具的可行性,并将降低II期工作的技术风险,包括(1)VSI性能的全面优化,(2)VSI与手术工作流程的完全整合,以及(3)使用200个乳房肿瘤切除术标本对VSI的临床受益进行更大规模的评价。在美国,约有6,000个外科实验室进行乳房肿瘤切除术,创造了一个估计为10亿美元的安装基础,其中大型教学项目和附属社区医院是我们的主要客户,提供了约750万美元的早期客户群。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Xiao Han其他文献

Xiao Han的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Xiao Han', 18)}}的其他基金

Immune Regulation of Dormancy at the Metastatic Site
转移部位休眠的免疫调节
  • 批准号:
    10744395
  • 财政年份:
    2023
  • 资助金额:
    $ 22.5万
  • 项目类别:
Real-time volumetric specimen imager for 3D intra-operative lumpectomy margin assessment
用于 3D 术中肿瘤切除术边缘评估的实时体积标本成像仪
  • 批准号:
    10476998
  • 财政年份:
    2016
  • 资助金额:
    $ 22.5万
  • 项目类别:
Real-time volumetric specimen imager for 3D intra-operative lumpectomy margin assessment
用于 3D 术中肿瘤切除术边缘评估的实时体积标本成像仪
  • 批准号:
    10208795
  • 财政年份:
    2016
  • 资助金额:
    $ 22.5万
  • 项目类别:

相似海外基金

CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
  • 批准号:
    2337776
  • 财政年份:
    2024
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
  • 批准号:
    2338816
  • 财政年份:
    2024
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
  • 批准号:
    2338846
  • 财政年份:
    2024
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
  • 批准号:
    2348261
  • 财政年份:
    2024
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
  • 批准号:
    2348346
  • 财政年份:
    2024
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
  • 批准号:
    2348457
  • 财政年份:
    2024
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
  • 批准号:
    2404989
  • 财政年份:
    2024
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
  • 批准号:
    2339310
  • 财政年份:
    2024
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
  • 批准号:
    2339669
  • 财政年份:
    2024
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Continuing Grant
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
  • 批准号:
    EP/Y029089/1
  • 财政年份:
    2024
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了