In situ Liquid Cell Transmission Electron Microscopy (LCTEM) for Observing Tumor Responsive Nanocarriers

用于观察肿瘤响应纳米载体的原位液体细胞透射电子显微镜 (LCTEM)

基本信息

  • 批准号:
    9051544
  • 负责人:
  • 金额:
    $ 5.61万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2016
  • 资助国家:
    美国
  • 起止时间:
    2016-03-01 至 2018-02-28
  • 项目状态:
    已结题

项目摘要

 DESCRIPTION (provided by applicant):Nanoparticles (NPs) have shown tremendous potential for the delivery of therapeutics and diagnostics to sites of disease in vivo.1-6 Traditionally, research has been focused on the design of NPs capable of passive accumulation within diseased tissue,7-10 or via an active targeting method employing displayed ligands for overexpressed receptors on tumor associated cells.2,3,6,11-13 By contrast, the focus of the Gianneschi lab has been on active targeting methods for accumulating NPs through physical changes in morphology and nanoscale structure in response to enzymatic signals associated with tumor tissue.14-17 In these active nanocarriers, it is their dynamic stimuli-responsive behavior that is the critical element in their functionality. However, very little is known about te fundamental mechanisms that underlie morphology transitions of this kind, primarily due to a lack of adequate techniques to observe nanoscale dynamic systems in real-time.6,18 This lack of understanding greatly limits the development of next-generation active nanocarriers where optimization is dependent on understanding basic mechanisms of action and response in complex liquid milieu. The long-term objective of the proposed research is to develop fundamental knowledge about the nanoscale mechanisms and kinetics of dynamic stimuli-responsive materials and processes. In situ liquid cell transmission electron microscopy (LCTEM) techniques18,19 will be developed and established as unique tools for imaging organic nanostructures in physiological liquids. The proposed work represent the first efforts to utilize TEM for imaging this type of material in liquid, which can lay the foundation for a future n which LCTEM is routinely used to characterize dynamic biological nanostructures including viruses and cellular components. Here, two different stimuli-responsive NP systems will be studied, one enzyme-responsive14-17 and one pH-responsive, both of which undergo morphological transformations after stimuli-induced reactions occur at the liquid-particle interface. Novel ultra-thin graphene liquid cells20,21 will be constructed for LCTEM characterization, overcoming issues related to image contrast and detection22-25 of these hydrated organic structures (Aim 1). Initial LCTEM experiments will image the synthesized and post-reaction morphologies at various stages of reaction progression using pre-mixed solutions, providing the first clues into the dynamic transformation processes involved. Ultimately, liquid-flow capabilities, using enzyme or acidic solution, will be employed with the graphene liquid cells to observe the complete stimuli-responsive behaviors, from the initial reaction events through to their final equilibrium morphologies (Aim 2). The acquired in situ LCTEM videos will be analyzed visually and by multi-target tracking computational methods26-28 to elucidate the mechanisms and kinetics of transformation. The results will expose the limiting and enabling steps for rapid transformation. With this knowledge, synthetic chemists can intelligently modify the chemistry of the micelle building blocks to create new nanocarriers with tailored stimuli-responsive transformation behaviors for improved in vivo behavior.
 描述(申请人提供):纳米颗粒(NPs)已经显示出将治疗剂和诊断剂递送到体内疾病部位的巨大潜力。1 -6传统上,研究一直集中在能够在患病组织内被动积累的NPs的设计上,7-10或通过采用肿瘤相关细胞上过表达受体的展示配体的主动靶向方法。2,3,6,11 -13相比之下,Gianneschi实验室的重点一直是通过响应于与肿瘤组织相关的酶信号的形态和纳米级结构的物理变化来积累NPs的主动靶向方法。14 -17在这些活性纳米载体中,其动态刺激响应行为是其功能的关键要素。然而,对这种形态转变的基本机制知之甚少,主要是由于缺乏足够的技术来实时观察纳米级动态系统。6,18这种缺乏理解极大地限制了下一代活性纳米载体的发展,其中优化依赖于理解复杂液体环境中的基本作用和响应机制。拟议研究的长期目标是发展有关动态刺激响应材料和工艺的纳米级机制和动力学的基础知识。原位液体细胞透射电子显微镜(LCTEM)技术18,19将被开发和建立作为独特的工具,用于成像有机纳米结构在生理液体。拟议的工作代表了利用TEM对液体中的这种材料进行成像的第一次努力,这可以为LCTEM常规用于表征包括病毒和细胞成分在内的动态生物纳米结构的未来奠定基础。在这里,将研究两种不同的刺激响应NP系统,一种酶响应14 -17和一种pH响应,这两种系统在液体-颗粒界面处发生刺激诱导的反应后都经历形态学转变。将构建新型超薄石墨烯液体电池20、21用于LCTEM表征,克服与这些水合有机结构的图像对比度和检测22 -25相关的问题(目标1)。初始LCTEM实验将使用预混合溶液在反应进程的各个阶段对合成和反应后形态进行成像,为所涉及的动态转化过程提供第一条线索。最终,使用酶或酸性溶液的液体流动能力将用于石墨烯液体电池 观察完整的刺激响应行为,从最初的反应事件到最终的平衡形态(目的2)。将通过视觉和多目标跟踪计算方法26 -28分析获得的原位LCTEM视频,以阐明转化的机制和动力学。研究结果将揭示快速转型的限制性和促进性步骤。有了这些知识,合成化学家可以智能地修改胶束构建块的化学性质,以创建具有定制的刺激响应转化行为的新纳米载体,以改善体内行为。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Lucas R. Parent其他文献

Experimental and computational investigations on the SOsub2/sub poisoning of (Lasub0.8/subSrsub0.2/sub)sub0.95/subMnOsub3/sub cathode materials
对(La0.8Sr0.2)0.95MnO3 阴极材料的 SO2 中毒的实验和计算研究
  • DOI:
    10.1016/j.apmate.2022.100062
  • 发表时间:
    2023-01-01
  • 期刊:
  • 影响因子:
    24.900
  • 作者:
    Rui Wang;Lucas R. Parent;Srikanth Gopalan;Yu Zhong
  • 通讯作者:
    Yu Zhong

Lucas R. Parent的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

The earliest exploration of land by animals: from trace fossils to numerical analyses
动物对陆地的最早探索:从痕迹化石到数值分析
  • 批准号:
    EP/Z000920/1
  • 财政年份:
    2025
  • 资助金额:
    $ 5.61万
  • 项目类别:
    Fellowship
Animals and geopolitics in South Asian borderlands
南亚边境地区的动物和地缘政治
  • 批准号:
    FT230100276
  • 财政年份:
    2024
  • 资助金额:
    $ 5.61万
  • 项目类别:
    ARC Future Fellowships
The function of the RNA methylome in animals
RNA甲基化组在动物中的功能
  • 批准号:
    MR/X024261/1
  • 财政年份:
    2024
  • 资助金额:
    $ 5.61万
  • 项目类别:
    Fellowship
Ecological and phylogenomic insights into infectious diseases in animals
对动物传染病的生态学和系统发育学见解
  • 批准号:
    DE240100388
  • 财政年份:
    2024
  • 资助金额:
    $ 5.61万
  • 项目类别:
    Discovery Early Career Researcher Award
RUI:OSIB:The effects of high disease risk on uninfected animals
RUI:OSIB:高疾病风险对未感染动物的影响
  • 批准号:
    2232190
  • 财政年份:
    2023
  • 资助金额:
    $ 5.61万
  • 项目类别:
    Continuing Grant
RUI: Unilateral Lasing in Underwater Animals
RUI:水下动物的单侧激光攻击
  • 批准号:
    2337595
  • 财政年份:
    2023
  • 资助金额:
    $ 5.61万
  • 项目类别:
    Continuing Grant
A method for identifying taxonomy of plants and animals in metagenomic samples
一种识别宏基因组样本中植物和动物分类的方法
  • 批准号:
    23K17514
  • 财政年份:
    2023
  • 资助金额:
    $ 5.61万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
Analysis of thermoregulatory mechanisms by the CNS using model animals of female-dominant infectious hypothermia
使用雌性传染性低体温模型动物分析中枢神经系统的体温调节机制
  • 批准号:
    23KK0126
  • 财政年份:
    2023
  • 资助金额:
    $ 5.61万
  • 项目类别:
    Fund for the Promotion of Joint International Research (International Collaborative Research)
Using novel modelling approaches to investigate the evolution of symmetry in early animals.
使用新颖的建模方法来研究早期动物的对称性进化。
  • 批准号:
    2842926
  • 财政年份:
    2023
  • 资助金额:
    $ 5.61万
  • 项目类别:
    Studentship
Study of human late fetal lung tissue and 3D in vitro organoids to replace and reduce animals in lung developmental research
研究人类晚期胎儿肺组织和 3D 体外类器官在肺发育研究中替代和减少动物
  • 批准号:
    NC/X001644/1
  • 财政年份:
    2023
  • 资助金额:
    $ 5.61万
  • 项目类别:
    Training Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了