In vivo Amyloid-Beta Imaging in Mouse Brain Using Stochastic Object Models

使用随机对象模型对小鼠大脑进行体内β-淀粉样蛋白成像

基本信息

  • 批准号:
    9248782
  • 负责人:
  • 金额:
    $ 12.18万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2014
  • 资助国家:
    美国
  • 起止时间:
    2014-02-01 至 2018-01-31
  • 项目状态:
    已结题

项目摘要

The overall goal of the proposed research is-to develop novel in vivo imaging methods for A(3 plaque detection and classification in transgenic mice using positron emission tomography (PET). The reduction of amyloid beta plaques is among the main therapeutic objectives for the treatment of Alzheimer's disease (AD). Ap imaging with PET has now entered the realm of the revised criteria for diagnosis of AD. In vivo imaging of Ap in mouse brain would facilitate the study of the AD pathology and testing of drugs that could stop or decelerate the disease progress. However, the heterogeneous microstructure of the plaques makes an in vivo approach to detecting and quantifying the plaque burden challenging due to insufficient resolution. Also, current image reconstruction techniques are not well adapted to the reconstruction of heterogeneous microstructures. The candidate is proposing a method that takes advantage of a stochastic object model of AP to improve in vivo imaging. The parameters of this model are sampled from distributions that contain information about the size and number of plaques in different brain regions as well as their variations among animals and changes overtime. These parameters are obtained from in vitro data using advanced stereological analysis methods. The stochastic object model will be incorporated into an optimization method, such as simulated annealing. The objective of this process is to search for a random realization of the object model that provides the best fit between the estimated and the measured data from the imaging system by minimizing a target function. The candidate's training in the K99 phase has provided the required skills to establish herself in this interdisciplinary field. It is also a logical extension of her past experience in PET/SPECT instrumentation and image reconstruction. The specific aims of the ROO phase outline studies to explore the feasibility of this technique with animal scans. The candidate's long-term goal is to develop signal detection and pattern recognition tools to overcome the practical limitations of iri vivo imaging systems while maintaining her focus on their implementation in AD research.
拟议研究的总体目标是开发新的A(3)斑块体内成像方法

项目成果

期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A new data analysis approach for measuring longitudinal changes of metabolism in cognitively normal elderly adults.
一种新的数据分析方法,用于测量认知正常老年人代谢的纵向变化。
  • DOI:
    10.2147/cia.s150859
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    3.6
  • 作者:
    Shokouhi,Sepideh;Riddle,WilliamR;Kang,Hakmook
  • 通讯作者:
    Kang,Hakmook
Imaging Brain Metabolism and Pathology in Alzheimer's Disease with Positron Emission Tomography.
使用正电子发射断层扫描对阿尔茨海默病的脑代谢和病理学进行成像。
Modeling clustered activity increase in amyloid-beta positron emission tomographic images with statistical descriptors.
使用统计描述符对淀粉样蛋白-β 正电子发射断层扫描图像中的聚集活性增加进行建模。
  • DOI:
    10.2147/cia.s82128
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    3.6
  • 作者:
    Shokouhi,Sepideh;Rogers,BaxterP;Kang,Hakmook;Ding,Zhaohua;Claassen,DanielO;Mckay,JohnW;Riddle,WilliamR;Alzheimer'sDiseaseNeuroimagingInitiative
  • 通讯作者:
    Alzheimer'sDiseaseNeuroimagingInitiative
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Sepideh Shokouhi其他文献

Sepideh Shokouhi的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Sepideh Shokouhi', 18)}}的其他基金

In vivo Amyloid-Beta Imaging in Mouse Brain Using Stochastic Object Models
使用随机对象模型对小鼠大脑进行体内β-淀粉样蛋白成像
  • 批准号:
    9002044
  • 财政年份:
    2014
  • 资助金额:
    $ 12.18万
  • 项目类别:
In vivo Amyloid-Beta Imaging in Mouse Brain Using Stochastic Object Models
使用随机对象模型对小鼠大脑进行体内β-淀粉样蛋白成像
  • 批准号:
    8792447
  • 财政年份:
    2014
  • 资助金额:
    $ 12.18万
  • 项目类别:
In vivo Amyloid-Beta Imaging in Mouse Brain Using Stochastic Object Models
使用随机对象模型对小鼠大脑进行体内β-淀粉样蛋白成像
  • 批准号:
    8795175
  • 财政年份:
    2014
  • 资助金额:
    $ 12.18万
  • 项目类别:
Estimation of Plaque Burden in Alzheimer's Mouse Models using SPECT Imaging
使用 SPECT 成像估计阿尔茨海默病小鼠模型中的斑块负担
  • 批准号:
    8241054
  • 财政年份:
    2011
  • 资助金额:
    $ 12.18万
  • 项目类别:
Estimation of Plaque Burden in Alzheimer's Mouse Models using SPECT Imaging
使用 SPECT 成像估计阿尔茨海默病小鼠模型中的斑块负担
  • 批准号:
    8047059
  • 财政年份:
    2011
  • 资助金额:
    $ 12.18万
  • 项目类别:

相似海外基金

DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
  • 批准号:
    EP/Y029089/1
  • 财政年份:
    2024
  • 资助金额:
    $ 12.18万
  • 项目类别:
    Research Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
  • 批准号:
    2337776
  • 财政年份:
    2024
  • 资助金额:
    $ 12.18万
  • 项目类别:
    Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
  • 批准号:
    2338816
  • 财政年份:
    2024
  • 资助金额:
    $ 12.18万
  • 项目类别:
    Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
  • 批准号:
    2338846
  • 财政年份:
    2024
  • 资助金额:
    $ 12.18万
  • 项目类别:
    Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
  • 批准号:
    2348261
  • 财政年份:
    2024
  • 资助金额:
    $ 12.18万
  • 项目类别:
    Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
  • 批准号:
    2348346
  • 财政年份:
    2024
  • 资助金额:
    $ 12.18万
  • 项目类别:
    Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
  • 批准号:
    2348457
  • 财政年份:
    2024
  • 资助金额:
    $ 12.18万
  • 项目类别:
    Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
  • 批准号:
    2404989
  • 财政年份:
    2024
  • 资助金额:
    $ 12.18万
  • 项目类别:
    Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
  • 批准号:
    2339310
  • 财政年份:
    2024
  • 资助金额:
    $ 12.18万
  • 项目类别:
    Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
  • 批准号:
    2339669
  • 财政年份:
    2024
  • 资助金额:
    $ 12.18万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了