Visualizing the Bacterial Replisome at Single-Molecule Resolution

以单分子分辨率可视化细菌复制体

基本信息

  • 批准号:
    8977855
  • 负责人:
  • 金额:
    $ 5.6万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2015
  • 资助国家:
    美国
  • 起止时间:
    2015-08-01 至 2017-07-31
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): The accurate and efficient replication of genomic DNA is critical for all organisms. Errors in this process can lead to mutations and ultimately to cancer. The important task of DNA replication is performed by a multi- protein complex, the replisome, which shares broadly conserved features across all domains of life. The central component of the replisome is DNA polymerase, the enzyme that synthesizes DNA with the help of processivity factors and other accessory proteins. In eukaryotes, three different polymerases are needed for chromosomal replication. This is in stark contrast to the model bacterial system, Escherichia coli, which has a single replicative polymerase. More recently, it has been discovered that two replicative polymerases, PolC and DnaE, are required in low-GC Gram-positive bacteria like Bacillus subtilis. Questions remain about the role of these polymerases and the mechanisms by which their activity is coordinated. Unlike PolC, DnaE lacks a proofreading domain and is error-prone; thus the proper regulation of DnaE activity during replication is critical for the cell. A detailed molecular-level understanding of how polymerase activity is coordinated by B. subtilis will provide insights into how replicative polymerases are regulated in more complex eukaryotic systems. This research will utilize novel single-molecule approaches to address the following specific aims: Aim 1: Determine the architecture and organizing principles of the B. subtilis replisome. It is becoming clear that the organization of the replisome in B. subtilis differs in key ways from that in E. coli, likely becaue of the need to coordinate two different polymerases. This aim will utilize in vivo single-molecule imaging of fluorescent fusion proteins to determine the copy number of important replisome components like the polymerases PolC and DnaE, the sliding clamp DnaN, and the τ subunit of the clamp loader complex. The protein-protein interactions that help to organize the replisome will be identified by making targeted mutations to domains implicated in these interactions. Aim 2: Investigate how PolC and DnaE activity is coordinated at the replication fork. In a current model for the role of PolC and DnaE, the two polymerases act sequentially on the lagging strand, meaning that polymerase exchange must occur repeatedly during replication. How such polymerase switching events are regulated and how interactions with replisome components mediate the exchange is unknown. These questions will be addressed by utilizing single-molecule imaging to measure the lifetimes of PolC and DnaE at the replication fork in live B. subtilis cells. The dynamics of individual PolC and DnaE molecules, which are obscured in ensemble biochemical experiments, will help to elucidate their roles during replication. A more targeted mechanistic investigation of polymerase exchange will be performed using an in vitro single- molecule DNA synthesis assay involving a minimally reconstituted replisome. This assay will reveal the kinetics of polymerase exchange and will help identify the protein-protein interactions involved in this process.
描述(由申请人提供):基因组DNA的准确和有效复制对所有生物体都至关重要。这个过程中的错误可能导致突变,最终导致癌症。DNA复制的重要任务是由多蛋白复合物--复制体--来完成的,复制体在生命的所有领域都具有广泛保守的特征。复制体的核心成分是DNA聚合酶,它是在持续合成因子和其他辅助蛋白的帮助下合成DNA的酶。在真核生物中,染色体复制需要三种不同的聚合酶。这与具有单一复制聚合酶的模式细菌系统大肠杆菌形成鲜明对比。最近,已经发现在低GC革兰氏阳性细菌如枯草芽孢杆菌中需要两种复制聚合酶PolC和DnaE。关于这些聚合酶的作用和它们的活性协调机制的问题仍然存在。与PolC不同,DnaE缺乏校对结构域并且容易出错;因此在复制期间DnaE活性的适当调节对细胞至关重要。一个详细的分子水平的了解聚合酶活性是如何协调的B。枯草芽孢杆菌将提供见解如何复制聚合酶在更复杂的真核系统的监管。这项研究将利用新的单分子方法来解决以下具体目标:目标1:确定B的结构和组织原则。枯草复制体越来越清楚的是,B中复制体的组织。subtilis与E.可能是因为需要协调两种不同的聚合酶。该目标将利用荧光融合蛋白的体内单分子成像来确定重要复制体组分如聚合酶PolC和DnaE、滑动夹DnaN和夹加载复合物的τ亚基的拷贝数。有助于组织复制体的蛋白质-蛋白质相互作用将通过对涉及这些相互作用的结构域进行靶向突变来鉴定。目的2:研究PolC和DnaE活动如何在复制叉处协调。在目前PolC和DnaE作用的模型中,这两种聚合酶依次作用于滞后链,这意味着聚合酶交换必须在复制过程中重复发生。这种聚合酶转换事件是如何调节的,以及与复制体组分的相互作用如何介导交换尚不清楚。这些问题将通过利用单分子成像来测量活B中复制叉处PolC和DnaE的寿命来解决。枯草杆菌细胞个别PolC和DnaE分子的动态,这是模糊的合奏生化实验,将有助于阐明它们在复制过程中的作用。将使用体外单分子DNA合成测定法进行聚合酶交换的更有针对性的机制研究,该测定法涉及最低限度重建的复制体。该试验将揭示聚合酶交换的动力学,并将有助于鉴定该过程中涉及的蛋白质-蛋白质相互作用。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Elizabeth Simmons Thrall其他文献

Elizabeth Simmons Thrall的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Elizabeth Simmons Thrall', 18)}}的其他基金

Molecular Mechanisms of Y-Family Translesion Polymerase Activity in Bacillus subtilis
枯草芽孢杆菌 Y 家族跨损伤聚合酶活性的分子机制
  • 批准号:
    10730396
  • 财政年份:
    2023
  • 资助金额:
    $ 5.6万
  • 项目类别:

相似海外基金

CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
  • 批准号:
    2339310
  • 财政年份:
    2024
  • 资助金额:
    $ 5.6万
  • 项目类别:
    Continuing Grant
Hardware-aware Network Architecture Search under ML Training workloads
ML 训练工作负载下的硬件感知网络架构搜索
  • 批准号:
    2904511
  • 财政年份:
    2024
  • 资助金额:
    $ 5.6万
  • 项目类别:
    Studentship
CAREER: Creating Tough, Sustainable Materials Using Fracture Size-Effects and Architecture
职业:利用断裂尺寸效应和架构创造坚韧、可持续的材料
  • 批准号:
    2339197
  • 财政年份:
    2024
  • 资助金额:
    $ 5.6万
  • 项目类别:
    Standard Grant
Travel: Student Travel Support for the 51st International Symposium on Computer Architecture (ISCA)
旅行:第 51 届计算机体系结构国际研讨会 (ISCA) 的学生旅行支持
  • 批准号:
    2409279
  • 财政年份:
    2024
  • 资助金额:
    $ 5.6万
  • 项目类别:
    Standard Grant
Understanding Architecture Hierarchy of Polymer Networks to Control Mechanical Responses
了解聚合物网络的架构层次结构以控制机械响应
  • 批准号:
    2419386
  • 财政年份:
    2024
  • 资助金额:
    $ 5.6万
  • 项目类别:
    Standard Grant
I-Corps: Highly Scalable Differential Power Processing Architecture
I-Corps:高度可扩展的差分电源处理架构
  • 批准号:
    2348571
  • 财政年份:
    2024
  • 资助金额:
    $ 5.6万
  • 项目类别:
    Standard Grant
Collaborative Research: Merging Human Creativity with Computational Intelligence for the Design of Next Generation Responsive Architecture
协作研究:将人类创造力与计算智能相结合,设计下一代响应式架构
  • 批准号:
    2329759
  • 财政年份:
    2024
  • 资助金额:
    $ 5.6万
  • 项目类别:
    Standard Grant
The architecture and evolution of host control in a microbial symbiosis
微生物共生中宿主控制的结构和进化
  • 批准号:
    BB/X014657/1
  • 财政年份:
    2024
  • 资助金额:
    $ 5.6万
  • 项目类别:
    Research Grant
RACCTURK: Rock-cut Architecture and Christian Communities in Turkey, from Antiquity to 1923
RACCTURK:土耳其的岩石建筑和基督教社区,从古代到 1923 年
  • 批准号:
    EP/Y028120/1
  • 财政年份:
    2024
  • 资助金额:
    $ 5.6万
  • 项目类别:
    Fellowship
NSF Convergence Accelerator Track M: Bio-Inspired Surface Design for High Performance Mechanical Tracking Solar Collection Skins in Architecture
NSF Convergence Accelerator Track M:建筑中高性能机械跟踪太阳能收集表皮的仿生表面设计
  • 批准号:
    2344424
  • 财政年份:
    2024
  • 资助金额:
    $ 5.6万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了