CRCNS:Subject-Specific Difusion MRI Profiles of Injury in TBI and PTSD
CRCNS:TBI 和 PTSD 损伤的特定主题扩散 MRI 轮廓
基本信息
- 批准号:9241597
- 负责人:
- 金额:$ 27.01万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-08-14 至 2019-05-31
- 项目状态:已结题
- 来源:
- 关键词:AccountingAlgorithmsAnxietyAtlasesBehavioralBrainBrain InjuriesClinicalClinical MarkersClinical ResearchCognitiveComplexDataData SetDetectionDiagnosisDiffusion Magnetic Resonance ImagingDiseaseEnsureFiberGoalsImageImaging DeviceInjuryInstructionLabelLearningLinkLocationMRI ScansMagnetic Resonance ImagingMapsMeasurementMeasuresMedical ImagingMeta-AnalysisMethodsModalityModelingMonitorNeurobehavioral ManifestationsOutputPathologyPatientsPatternPopulationPost-Traumatic Stress DisordersPrincipal InvestigatorProbabilityProcessReadingRecoveryRecruitment ActivityReportingResearchSample SizeScanningSensitivity and SpecificitySeveritiesSignal TransductionSiteStagingStatistical ModelsStructureStudy SubjectTechniquesTechnologyTestingTraumatic Brain InjuryTreatment Efficacyage groupbasebrain abnormalitiesclinical caredesignexperiencehuman dataimage processingimaging biomarkerimaging modalityindexinginterestmild traumatic brain injuryneuroimagingneuropsychologicalnew technologynovelprocessing speedprogramssymptomatologytool
项目摘要
While mild traumatic brain injury (mTBI) has become the focus of many neuroimaging studies, the
understanding of mTBI, particularly in patients who evince no radiological evidence of injury and yet
experience clinical and cognitive symptoms, has remained a complex challenge. Sophisticated imaging tools
are needed to delineate the kind of subtle brain injury that is extant in these patients, as existing tools are
often ill-suited for the diagnosis of mTBI. For example, conventional magnetic resonance imaging (MRI)
studies have focused on seeking a spatially consistent pattern of abnormal signal using statistical analyses
that compare average differences between groups, i.e., separating mTBI from healthy controls. While these
methods are successful in many diseases, they are not as useful in mTBI, where brain injuries are spatially
heterogeneous.
The goal of this proposal is to develop a robust framework to perform subject-specific neuroimaging
analyses of Diffusion MRI (dMRI), as this modality has shown excellent sensitivity to brain injuries and can
locate subtle brain abnormalities that are not detected using routine clinical neuroradiological readings. New
algorithms will be developed to create Individualized Brain Abnormality (IBA) maps that will have a number
of clinical and research applications. In this proposal, this technology will be used to analyze a previously
acquired dataset from the INTRuST Clinical Consortium, a multi-center effort to study subjects with Post-
Traumatic Stress Disorder (PTSD) and mTBI. Neuroimaging abnormality measures will be linked to clinical
and neuropsychological assessments. This technique will allow us to tease apart neuroimaging differences
between PTSD and mTBI and to establish baseline relationships between neuroimaging markers, and
clinical and cognitive measures.
Upon completion of this project, a set of tools, which have the potential to establish radiological evidence of
brain injury in mTBI, will have been designed and evaluated, thereby enhancing both the diagnosis and
monitoring of progression/recovery of injury, as well assessing the efficacy of therapies on the injured brain.
RELEVANCE (See instructions):
One major limitation to standard clinical care is that imaging methods used routinely for diagnosis are not
sensitive enough to detect the subtle pathologies of mild Traumatic Brain Injury (mTBI). The overarching
goal of this proposal is to design tools to create individualized brain injury maps from diffusion MRI that can
detect these subtle abnormalities, and help establish a link between imaging and symptomatology in mTBI.
虽然轻度创伤性脑损伤(mTBI)已成为许多神经影像学研究的焦点,
理解mTBI,特别是在没有放射学证据显示损伤的患者中,
经历临床和认知症状,仍然是一个复杂的挑战。先进的成像工具
需要描绘出这些患者中存在的那种微妙的脑损伤,因为现有的工具是
通常不适合诊断mTBI。例如,常规磁共振成像(MRI)
研究集中于使用统计分析来寻找异常信号的空间一致模式
比较组间的平均差异,即,将mTBI与健康对照分开。虽然这些
虽然这些方法在许多疾病中是成功的,但它们在mTBI中不那么有用,其中脑损伤在空间上是
异质的
该提案的目标是开发一个强大的框架来执行特定对象的神经成像
弥散MRI(dMRI)分析,因为这种方式对脑损伤表现出极好的敏感性,
定位常规临床神经放射学读数无法检测到的细微脑部异常。新
将开发算法来创建个性化脑异常(IBA)图,
临床和研究应用。在这项提案中,这项技术将被用来分析一个以前
从INTRuST临床联盟获得的数据集,该联盟是一个多中心研究受试者的研究项目,
创伤性应激障碍(PTSD)和mTBI。神经影像学异常测量将与临床
和神经心理学评估这项技术将使我们能够梳理出神经成像的差异
PTSD和mTBI之间的关系,并建立神经影像学标志物之间的基线关系,
临床和认知测量。
该项目完成后,将提供一套工具,这些工具有可能建立放射性证据,
mTBI中的脑损伤,将被设计和评估,从而提高诊断和
监测损伤的进展/恢复,以及评估治疗对受伤大脑的功效。
相关性(参见说明):
标准临床护理的一个主要局限性是常规用于诊断的成像方法并不
灵敏度足以检测轻度创伤性脑损伤(mTBI)的细微病理。总体
该提案的目标是设计工具,从弥散MRI创建个性化的脑损伤图,
检测这些细微的异常,并帮助建立mTBI的成像和影像学之间的联系。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Sylvain Bouix其他文献
Sylvain Bouix的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Sylvain Bouix', 18)}}的其他基金
High Resolution, Comprehensive Atlases of the Human Brain Morphology
高分辨率、全面的人脑形态图谱
- 批准号:
10165186 - 财政年份:2020
- 资助金额:
$ 27.01万 - 项目类别:
High Resolution, Comprehensive Atlases of the Human Brain Morphology
高分辨率、全面的人脑形态图谱
- 批准号:
10053340 - 财政年份:2017
- 资助金额:
$ 27.01万 - 项目类别:
High Resolution, Comprehensive Atlases of the Human Brain Morphology
高分辨率、全面的人脑形态图谱
- 批准号:
10318144 - 财政年份:2017
- 资助金额:
$ 27.01万 - 项目类别:
Computational Morphometry in Schizophrenia and Related Disorders
精神分裂症及相关疾病的计算形态测量
- 批准号:
8063954 - 财政年份:2009
- 资助金额:
$ 27.01万 - 项目类别:
Computational Morphometry in Schizophrenia and Related Disorders
精神分裂症及相关疾病的计算形态测量
- 批准号:
8257182 - 财政年份:2009
- 资助金额:
$ 27.01万 - 项目类别:
Computational Morphometry in Schizophrenia and Related Disorders
精神分裂症及相关疾病的计算形态测量
- 批准号:
7727105 - 财政年份:2009
- 资助金额:
$ 27.01万 - 项目类别:
Computational Morphometry in Schizophrenia and Related Disorders
精神分裂症及相关疾病的计算形态测量
- 批准号:
8432454 - 财政年份:2009
- 资助金额:
$ 27.01万 - 项目类别:
Computational Morphometry in Schizophrenia and Related Disorders
精神分裂症及相关疾病的计算形态测量
- 批准号:
7862376 - 财政年份:2009
- 资助金额:
$ 27.01万 - 项目类别:
相似海外基金
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 27.01万 - 项目类别:
Research Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
$ 27.01万 - 项目类别:
Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
- 批准号:
2338816 - 财政年份:2024
- 资助金额:
$ 27.01万 - 项目类别:
Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
$ 27.01万 - 项目类别:
Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
- 批准号:
2348261 - 财政年份:2024
- 资助金额:
$ 27.01万 - 项目类别:
Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
- 批准号:
2348346 - 财政年份:2024
- 资助金额:
$ 27.01万 - 项目类别:
Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
- 批准号:
2348457 - 财政年份:2024
- 资助金额:
$ 27.01万 - 项目类别:
Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
$ 27.01万 - 项目类别:
Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 27.01万 - 项目类别:
Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
- 批准号:
2339669 - 财政年份:2024
- 资助金额:
$ 27.01万 - 项目类别:
Continuing Grant