Integrated Discovery Pipeline for Tumor Neoantigens

肿瘤新抗原的综合发现管道

基本信息

  • 批准号:
    9194067
  • 负责人:
  • 金额:
    $ 56.28万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2016
  • 资助国家:
    美国
  • 起止时间:
    2016-09-08 至 2021-08-31
  • 项目状态:
    已结题

项目摘要

Project Summary Cancer immunotherapy is now established as a major therapeutic modality. Significant progress with checkpoint inhibitor monoclonal antibodies demonstrates durable tumor regression in metastatic melanoma, lung cancer and other malignancies. One conspicuous limitation is the paucity of validated tumor antigens, which impedes clinical investigators in their pursuit of developing new cancer immunotherapies. Tumor encoded non-synonymous mutations may provide a new source of potential target antigens. T cells recognize tumor missense mutations as amino acid substituted peptides presented in the context of major histocompatibility molecules on the cancer cell surface, thus implicating missense mutations as a source of patient-specific neoantigens. We recently described the first-in-human study to use next generation sequencing technologies to identify and validate tumor missense mutations as neoantigens. Our study demonstrates that vaccination increases the breadth and diversity of neoantigen-specific T cells resulting in a broad repertoire of effector CD8+ T cells that uniquely discriminates mutated antigens from wild type peptides ensuring tumor specificity. This proposal aims to find a unique solution to the scarcity of tumor antigens by developing a neoantigen discovery pipeline that integrates genomic and proteomic technologies. In this proposal, a unique academic-industry partnership comprised of an established team of experts, in cancer genomics, cancer proteomics, human immunology, and clinical oncology, aim to solve the challenging problem of tumor neoantigen discovery. The long-term goal is to develop a robust pipeline using cutting-edge technologies merged with machine learning algorithms to supply tumor neoantigens for clinical investigation. The goal of this proposal will be addressed in the experiments of the following specific aims: 1) to identify the repertoire of melanoma expressed somatic mutations by next generation sequencing technologies; 2) to develop a novel proteomics platform to identify melanoma neoantigens presented by HLA class I molecules; 3) to validate neoantigen identification in a vaccination protocol. The proposed pipeline will deliver a transformative solution for tumor antigen identification, should be translatable to other “immune responsive“ malignancies and enable the nascent discipline of precision medicine to provide effective and safe immunotherapies for cancer patients.
项目摘要 癌症免疫疗法现在被确立为主要的治疗方式。重大进展 检查点抑制剂单克隆抗体在转移性黑色素瘤中显示出持久的肿瘤消退, 肺癌和其他恶性肿瘤。一个明显的局限性是缺乏有效的肿瘤抗原, 这阻碍了临床研究者寻求开发新的癌症免疫疗法。肿瘤 编码的非同义突变可提供潜在靶抗原的新来源。T细胞识别 肿瘤错义突变作为氨基酸取代的肽,在主要 癌细胞表面的组织相容性分子,从而暗示错义突变是癌细胞的来源。 患者特异性新抗原。我们最近描述了第一次在人体研究中使用下一代 测序技术来鉴定和验证肿瘤错义突变作为新抗原。我们的研究 表明疫苗接种增加了新抗原特异性T细胞的宽度和多样性,导致免疫应答。 独特区分突变抗原与野生型肽的效应CD 8 + T细胞的广泛库 确保肿瘤特异性。该提案旨在通过以下方式找到解决肿瘤抗原稀缺的独特解决方案: 开发整合基因组学和蛋白质组学技术的新抗原发现管道。在这 一个独特的学术-工业合作伙伴关系,由一个成熟的专家团队组成,在癌症领域 基因组学、癌症蛋白质组学、人类免疫学和临床肿瘤学,旨在解决具有挑战性的问题 肿瘤新抗原的发现长期目标是开发一个强大的管道, 技术与机器学习算法相结合,为临床研究提供肿瘤新抗原。 本提案的目标将在以下具体目标的实验中得到解决:1)确定 通过下一代测序技术检测黑色素瘤表达的体细胞突变库; 2) 开发新的蛋白质组学平台以鉴定由HLA I类分子呈递的黑色素瘤新抗原; 3) 以验证疫苗接种方案中的新抗原鉴定。 拟议的管道将为肿瘤抗原识别提供一个变革性的解决方案, 可转化为其他“免疫反应”恶性肿瘤,并使新生学科的精确 为癌症患者提供有效和安全的免疫疗法。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Beatriz M. Carreno其他文献

PD-L2 is a second ligand for PD-1 and inhibits T cell activation
PD-L2 是 PD-1 的第二种配体,可抑制 T 细胞活化
  • DOI:
    10.1038/85330
  • 发表时间:
    2001-03-01
  • 期刊:
  • 影响因子:
    27.600
  • 作者:
    Yvette Latchman;Clive R. Wood;Tatyana Chernova;Divya Chaudhary;Madhuri Borde;Irene Chernova;Yoshiko Iwai;Andrew J. Long;Julia A. Brown;Raquel Nunes;Edward A. Greenfield;Karen Bourque;Vassiliki A. Boussiotis;Laura L. Carter;Beatriz M. Carreno;Nelly Malenkovich;Hiroyuki Nishimura;Taku Okazaki;Tasuku Honjo;Arlene H. Sharpe;Gordon J. Freeman
  • 通讯作者:
    Gordon J. Freeman
Mutant KRAS peptide targeted CAR-T cells engineered for cancer therapy
  • DOI:
    10.1016/j.ccell.2025.05.006
  • 发表时间:
    2025-07-14
  • 期刊:
  • 影响因子:
    44.500
  • 作者:
    Alexander Benton;Jiageng Liu;Mathilde A. Poussin;Andrea Lang Goldgewicht;Madhara Udawela;Adham S. Bear;Nils Wellhausen;Beatriz M. Carreno;Pete M. Smith;Matthew D. Beasley;Ben R. Kiefel;Daniel J. Powell
  • 通讯作者:
    Daniel J. Powell
Disinhibition of T Cell Activation Via CD5 Knockout Is a Universal Strategy to Enhance Adoptive T Cell Immunotherapies
  • DOI:
    10.1182/blood-2023-186611
  • 发表时间:
    2023-11-02
  • 期刊:
  • 影响因子:
  • 作者:
    Ruchi P. Patel;Guido Ghilardi;Yunlin Zhang;Puneeth Guruprasad;Mathew G. Angelos;Raymone Pajarillo;Khatuna Gabunia;Chong Xu;Tatiana Blanchard;John Scholler;Patrizia Porazzi;Gerald Linette;Beatriz M. Carreno;Marco Ruella
  • 通讯作者:
    Marco Ruella
EZH1/2 Inhibition Improves the Anti-Tumor Efficacy of CAR and TCR T-Cell Based Therapies Against Multiple Liquid and Solid Tumors
  • DOI:
    10.1182/blood-2024-206011
  • 发表时间:
    2024-11-05
  • 期刊:
  • 影响因子:
  • 作者:
    Siena Nason;Ziqi Yang;Guido Ghilardi;Luca Paruzzo;Alberto Carturan;Eugenio Fardella;Puneeth Guruprasad;Anushka Anant Padmanabhan;Tatiana Blanchard;Gerald Linette;Beatriz M. Carreno;Sandra Susanibar-Adaniya;Alfred L. Garfall;Marco Ruella;Patrizia Porazzi
  • 通讯作者:
    Patrizia Porazzi
Immunoglobuline humanisee reagissant avec des molecules b7 et methodes de traitement avec celles-ci
人源免疫球蛋白试剂分子b7和细胞特征方法
  • DOI:
  • 发表时间:
    2000
  • 期刊:
  • 影响因子:
    0
  • 作者:
    M. S. Co;Maximiliano Vásquez;Beatriz M. Carreno;A. Celniker;M. Collins;Samuel Goldman;Gary S. Gray;Andrea Knight;D. O'Hara;Bonita Rup;Geertruida M. Veldman;Garvin Warner;Stuart Friedrich
  • 通讯作者:
    Stuart Friedrich

Beatriz M. Carreno的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Beatriz M. Carreno', 18)}}的其他基金

Next generation T cell therapies for mutant KRAS solid tumors
针对突变 KRAS 实体瘤的下一代 T 细胞疗法
  • 批准号:
    10731929
  • 财政年份:
    2023
  • 资助金额:
    $ 56.28万
  • 项目类别:
Integrated Discovery Pipeline for Tumor Neoantigens
肿瘤新抗原的综合发现管道
  • 批准号:
    9349466
  • 财政年份:
    2016
  • 资助金额:
    $ 56.28万
  • 项目类别:
Integrated Discovery Pipeline for Tumor Neoantigens
肿瘤新抗原的综合发现管道
  • 批准号:
    9765042
  • 财政年份:
    2016
  • 资助金额:
    $ 56.28万
  • 项目类别:
SOMATIC NON-SYNONYMOUS MUTATIONS AS UNIQUE TUMOR ANTIGENS IN MELANOMA
体细胞非同义突变作为黑色素瘤中独特的肿瘤抗原
  • 批准号:
    8688193
  • 财政年份:
    2013
  • 资助金额:
    $ 56.28万
  • 项目类别:
SOMATIC NON-SYNONYMOUS MUTATIONS AS UNIQUE TUMOR ANTIGENS IN MELANOMA
体细胞非同义突变作为黑色素瘤中独特的肿瘤抗原
  • 批准号:
    8585662
  • 财政年份:
    2013
  • 资助金额:
    $ 56.28万
  • 项目类别:

相似海外基金

DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
  • 批准号:
    EP/Y029089/1
  • 财政年份:
    2024
  • 资助金额:
    $ 56.28万
  • 项目类别:
    Research Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
  • 批准号:
    2337776
  • 财政年份:
    2024
  • 资助金额:
    $ 56.28万
  • 项目类别:
    Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
  • 批准号:
    2338816
  • 财政年份:
    2024
  • 资助金额:
    $ 56.28万
  • 项目类别:
    Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
  • 批准号:
    2338846
  • 财政年份:
    2024
  • 资助金额:
    $ 56.28万
  • 项目类别:
    Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
  • 批准号:
    2348261
  • 财政年份:
    2024
  • 资助金额:
    $ 56.28万
  • 项目类别:
    Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
  • 批准号:
    2348346
  • 财政年份:
    2024
  • 资助金额:
    $ 56.28万
  • 项目类别:
    Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
  • 批准号:
    2348457
  • 财政年份:
    2024
  • 资助金额:
    $ 56.28万
  • 项目类别:
    Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
  • 批准号:
    2404989
  • 财政年份:
    2024
  • 资助金额:
    $ 56.28万
  • 项目类别:
    Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
  • 批准号:
    2339310
  • 财政年份:
    2024
  • 资助金额:
    $ 56.28万
  • 项目类别:
    Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
  • 批准号:
    2339669
  • 财政年份:
    2024
  • 资助金额:
    $ 56.28万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了