The Role of Cryptochromes in Circadian Regulation of Metabolism
隐花色素在代谢昼夜节律调节中的作用
基本信息
- 批准号:9175163
- 负责人:
- 金额:$ 69.14万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-09-01 至 2019-06-30
- 项目状态:已结题
- 来源:
- 关键词:AffinityAllelesArchitectureBindingBinding SitesBiochemicalBiochemistryBioinformaticsBiological AssayBiological ClocksBiological ModelsBiological ProcessBiologyCardiovascular DiseasesCell NucleusCellsChIP-seqChemicalsChromatinCircadian RhythmsClinicalClock proteinCollaborationsCollectionComplexCytoplasmDNA BindingDNA-Protein InteractionDataData SetDiabetes MellitusDiseaseDoseEnhancersGene TargetingGenesGeneticGenomicsGluconeogenesisHealthHepatocyteHot SpotHourHumanImpairmentIn VitroJet Lag SyndromeLengthLiverLocalesMediatingMetabolicMetabolic DiseasesMetabolic PathwayMetabolismModelingMolecularMolecular TargetMusNuclearNucleic Acid Regulatory SequencesOrganismPathway interactionsPeriodicityPhysiological ProcessesPhysiologyProteinsProteomicsReagentRegulationRepressionResolutionRoentgen RaysRoleSeriesSleep Wake CycleSleeplessnessSpecificityStructureSystemTechniquesTherapeuticTimeTissuesTranslationsValidationWorkX-Ray Crystallographyabstractingbaseblood glucose regulationchromosome conformation capturecircadian pacemakercryptochromedesigngene repressiongenome-wideglucose toleranceimprovedin vivoinsightmutantnext generationnovelnovel therapeuticsprotein metabolismsmall moleculesuccesstooltranscription factortranscriptome sequencingtranscriptomics
项目摘要
Project Summary / Abstract
Circadian rhythms are pervasive among organisms, allowing them to anticipate and adapt to the predictable
24-hour day-night cycle. Their function is to temporally coordinate physiological processes, such as
metabolism, within the organism. Consequently, the disruption of circadian rhythms leads to desynchronized
internal clocks and complex metabolic disorders, such as diabetes. The mechanism of how the clock controls
downstream metabolic pathways is not well-established. One of the central players in this relationship is the
core clock gene Cryptochrome (Cry). CRY is necessary to maintain rhythmicity and determine period length,
but it has also been implicated in diabetes and glucose tolerance. Until recently, CRY was thought to function
only in the nucleus; our recent unanticipated findings indicate it also inhibits gluconeogenesis in the cytoplasm
through its interaction with Gsα. In parallel, nuclear CRY also regulates gluconeogenesis, albeit through a
completely different pathway. Together, this two-pronged approach allows CRY to fine-tune its regulation of
glucose homeostasis; however, its presence in two subcellular locales has made it difficult to study its
compartment-specific mechanisms. To overcome this challenge, we created two unique reagents that localize
CRY to each region. Cytosolic CRY will be studied at the atomic and cellular level to identify its binding
partners and how their interactions determine their biochemical functions. Nuclear CRY will be investigated on
the genomic scale to uncover its interactions with other transcription factors in the enhancers of
gluconeogenesis genes. Chromosome conformation capture techniques will enable us to model nucleus-wide
hepatocyte-specific enhancer architecture. On the therapeutic front, we will characterize the mechanism of
action of novel clock-modifying chemical compounds identified from our screens. These compounds have the
potential to identify novel clock genes and to regulate metabolism, paving the way towards clinical translation.
The use of these techniques to study how CRY controls gluconeogenesis will be a proof-of-concept for how the
clock achieves precision in modulating a tissue-specific metabolic pathway. The success of these studies will
significantly improve the understanding of the crosstalk between the biological clock and physiology or disease
states, as well as provide a proof-of-concept model for applying cell-based findings in improving human health.
项目摘要 /摘要
昼夜节律在生物体中普遍存在,使它们能够预期并适应可预测的
24小时昼夜周期。它们的功能是临时协调物理过程,例如
代谢,在生物体中。因此,昼夜节律的破坏导致了异议
内部时钟和复杂的代谢性疾病,例如糖尿病。时钟如何控制的机制
下游的代谢途径没有建立良好的。这种关系中的核心参与者之一是
核心时钟基因加密色素(哭泣)。哭泣是维持节奏性并确定周期长度的必要条件
但是它也暗示在糖尿病和葡萄糖耐受性中。直到最近,哭泣仍被认为起作用
仅在核中;我们最近的意外发现,表明它也抑制了细胞质中的谷杆菌生成
通过与GSα的相互作用。同时,核哭泣还调节糖异生,尽管通过
完全不同的途径。这种两管沟的方法一起允许哭泣,以微调其调节
葡萄糖稳态;但是,它在两个亚细胞的存在中的存在使得很难研究其
隔室特异性机制。为了克服这一挑战,我们创建了两个本地化的独特试剂
向每个区域哭泣。胞质哭泣将在原子和细胞水平上进行研究,以识别其结合
伙伴以及他们的相互作用如何决定其生化功能。将调查核哭泣
在增强子中发现其与其他转录因子相互作用的基因组量表
糖异生基因。染色体会议捕获技术将使我们能够模拟整个核的模型
肝细胞特异性增强剂体系结构。在治疗方面,我们将表征
从我们的屏幕上鉴定出的新型时钟修改化合物的作用。这些化合物具有
潜力鉴定新的时钟基因并调节新陈代谢,为临床翻译铺平道路。
使用这些技术来研究哭泣如何控制葡萄糖的方法将是概念概念的证明
时钟在调节组织特异性代谢途径时达到了精度。这些研究的成功将
显着提高对生物钟与生理或疾病之间串扰的理解
国家,以及提供概念验证模型,用于在改善人类健康中应用基于细胞的发现。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
STEVE A KAY其他文献
STEVE A KAY的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('STEVE A KAY', 18)}}的其他基金
Targeting the Circadian Rhythm in Glioblastoma Stem Cells (R01CA238662)
靶向胶质母细胞瘤干细胞的昼夜节律 (R01CA238662)
- 批准号:
10419142 - 财政年份:2021
- 资助金额:
$ 69.14万 - 项目类别:
Targeting the Circadian Rhythm in Glioblastoma Stem Cells (R01CA238662)
靶向胶质母细胞瘤干细胞的昼夜节律 (R01CA238662)
- 批准号:
10530615 - 财政年份:2021
- 资助金额:
$ 69.14万 - 项目类别:
Targeting the Circadian Rhythm in Glioblastoma Stem Cells (R01CA238662)
靶向胶质母细胞瘤干细胞的昼夜节律 (R01CA238662)
- 批准号:
10308040 - 财政年份:2021
- 资助金额:
$ 69.14万 - 项目类别:
Targeting the Circadian Rhythm in Glioblastoma Stem Cells
针对胶质母细胞瘤干细胞的昼夜节律
- 批准号:
9888132 - 财政年份:2019
- 资助金额:
$ 69.14万 - 项目类别:
Targeting the Circadian Rhythm in Glioblastoma Stem Cells
针对胶质母细胞瘤干细胞的昼夜节律
- 批准号:
10061578 - 财政年份:2019
- 资助金额:
$ 69.14万 - 项目类别:
The Role of Cryptochromes in Circadian Regulation of Metabolism
隐花色素在代谢昼夜节律调节中的作用
- 批准号:
9342896 - 财政年份:2016
- 资助金额:
$ 69.14万 - 项目类别:
Role of Ror proteins in the mammalian circadian clock
Ror 蛋白在哺乳动物生物钟中的作用
- 批准号:
7204152 - 财政年份:2006
- 资助金额:
$ 69.14万 - 项目类别:
Role of Ror proteins in the mammalian circadian clock
Ror 蛋白在哺乳动物生物钟中的作用
- 批准号:
8656526 - 财政年份:2006
- 资助金额:
$ 69.14万 - 项目类别:
Role of Ror proteins in the mammalian circadian clock
Ror 蛋白在哺乳动物生物钟中的作用
- 批准号:
7390286 - 财政年份:2006
- 资助金额:
$ 69.14万 - 项目类别:
Role of Ror proteins in the mammalian circadian clock
Ror 蛋白在哺乳动物生物钟中的作用
- 批准号:
8328724 - 财政年份:2006
- 资助金额:
$ 69.14万 - 项目类别:
相似国自然基金
等位基因聚合网络模型的构建及其在叶片茸毛发育中的应用
- 批准号:32370714
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
基于等位基因非平衡表达的鹅掌楸属生长量杂种优势机理研究
- 批准号:32371910
- 批准年份:2023
- 资助金额:50.00 万元
- 项目类别:面上项目
基于人诱导多能干细胞技术研究突变等位基因特异性敲除治疗1型和2型长QT综合征
- 批准号:82300353
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
ACR11A不同等位基因调控番茄低温胁迫的机理解析
- 批准号:32302535
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
肠杆菌多粘菌素异质性耐药中phoPQ等位基因差异介导不同亚群共存的机制研究
- 批准号:82302575
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Gene-edited liver organoids for predictive hepatotoxicity
用于预测肝毒性的基因编辑肝脏类器官
- 批准号:
10758179 - 财政年份:2023
- 资助金额:
$ 69.14万 - 项目类别:
Mechanisms of Action of Natural Genetic Variation
自然遗传变异的作用机制
- 批准号:
10587460 - 财政年份:2023
- 资助金额:
$ 69.14万 - 项目类别:
Investigating Cis and Trans Regulation of Complex Phenotypes
研究复杂表型的顺式和反式调节
- 批准号:
10644267 - 财政年份:2023
- 资助金额:
$ 69.14万 - 项目类别:
Predicting Tissue Specific Gli3 Regulatory Activity Using Hand2
使用 Hand2 预测组织特异性 Gli3 调节活动
- 批准号:
10647737 - 财政年份:2022
- 资助金额:
$ 69.14万 - 项目类别:
Post-GWAS Functional Genomics Analysis to Define Pathogenic Mechanisms for Pulmonary Arterial Hypertension
GWAS 后功能基因组学分析确定肺动脉高压的致病机制
- 批准号:
10524975 - 财政年份:2022
- 资助金额:
$ 69.14万 - 项目类别: