The role of oxidative stress in the pathogenesis of Reticular Dysgenesis and thetherapeutic potential of antioxidants
氧化应激在网状发育不全发病机制中的作用和抗氧化剂的治疗潜力
基本信息
- 批准号:9317208
- 负责人:
- 金额:$ 4.94万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-04-14 至 2021-03-31
- 项目状态:已结题
- 来源:
- 关键词:Adenine NucleotidesAdenosine DiphosphateAdenosine MonophosphateAdvisory CommitteesAffectAftercareAntioxidantsAreaAwardBacterial InfectionsBiologyBostonCRISPR/Cas technologyCause of DeathCell Differentiation processCell LineCell modelCell physiologyCessation of lifeChildClinicalComplementConstitutionDana-Farber Cancer InstituteDataDefectDevelopmentDevelopment PlansDiagnosisDiseaseDisease modelEffectivenessEngraftmentEnsureEnzymesGenerationsGenesGlutathioneGoalsHealthHematological DiseaseHematologyHematopoiesisHematopoieticHematopoietic Stem Cell TransplantationImmuneImmunologic Deficiency SyndromesImmunologyIn SituIn VitroInstitutionLeadLifeLymphopeniaMediatingMentorsMetabolicMetabolismMicrobiologyMitochondriaModelingMolecularMusMutateMutationMycosesMyelogenousMyeloid CellsNatural ImmunityNatureNeutropeniaOncologyOutcomeOxidation-ReductionOxidative StressPathogenesisPathologyPatientsPediatric HematologistPediatric HematologyPediatric HospitalsPhysiciansPlayPositioning AttributeResearchResearch PersonnelResearch Project GrantsResearch ProposalsResearch TrainingRoleScientistSensorineural Hearing LossSevere Combined ImmunodeficiencySpecimenStagingStructureSupportive careTestingTherapeuticTherapeutic Human ExperimentationTimeTrainingTranslatingTranslational ResearchTransplantationUniversitiesWorkXenograft ModelXenograft procedureZebrafishadaptive immunityadenylate kinasebasecareercareer developmentclinical carecongenital immunodeficiencydesignexperiencegene correctionhigh riskhuman diseasehumanized mouseimprovedin vitro Modelin vivoinduced pluripotent stem cellinfancymitochondrial dysfunctionmitochondrial metabolismmouse modelneutrophilnovel strategiesoutcome forecastprogenitorreconstitutionreticular dysgenesisstemstem cell biologystem cell differentiationstem cellstandem mass spectrometrytargeted treatmenttenure tracktherapeutic targettissue culture
项目摘要
DESCRIPTION (provided by applicant): Reticular Dysgenesis (RD) is one of the most serious forms of severe combined immunodeficiency (SCID) because it affects both innate and adaptive immunity. The disease is characterized by arrested neutrophil maturation, profound lymphopenia, and sensorineural hearing loss. It is invariably fatal early in life unless immune reconstitution is achieved by hematopoietic stem cell transplantation (HSCT). The simultaneous occurrence of severe neutropenia and lymphopenia is responsible for a high risk of death in infancy, and the predominance of bacterial and fungal infections supports neutropenia as the prevailing cause of death. RD is caused by mutations in the mitochondrial enzyme Adenylate Kinase 2 (AK2), however, how AK2 defects translate into disease pathology is largely unknown. Overall, transplant outcomes in RD are significantly worse compared to any other form of SCID, suggesting that the nature of the genetic defect may directly impact the poor prognosis. Therefore, elucidating the mechanistic basis of RD is critical in order to target the underlying problem and develop additional therapeutic options. Our prior work in induced pluripotent stem cell and zebrafish models of RD has shown that hematopoietic stem and progenitor cell differentiation is compromised but can be rescued by treatment with antioxidant agents (Rissone, Weinacht et al., J Exp Med, 2015, in press). These data led to the hypothesis that AK2 defects impair mitochondrial metabolism and increase oxidative stress, and that antioxidant agents improve mitochondrial function and represent a targeted supportive therapy to treat the neutropenia and overall constitution of patients with RD. To test this hypothesis I will dissect th molecular mechanisms underlying RD and their responsiveness to antioxidants by defining mitochondrial metabolism, oxidative stress and antioxidant reserve in different iPSC-models of RD before and after treatment with antioxidants. To demonstrate that the in vitro findings can be translated to patients, I will develop a xenograft model of RD based on transplantation of AK2-deficient iPSC-derived respecified multipotent hematopoietic progenitors into NSG-mice, and examine how antioxidant treatment affects engraftment, differentiation potential and mitochondrial function. If my preliminary findings that antioxidants improve mitochondrial function are supported by the proposed research, the therapeutic potential of these agents could be exploited in a much wider range of diseases, in which mitochondrial pathology and oxidative stress are at play. I am a pediatric hematologist with focus on immune and immune-mediated diseases and substantial prior research experience in molecular microbiology, stem cell differentiation and reprogramming, who is seeking K08 support for mentored research under the guidance of Dr. Luigi Notarangelo, Division of Immunology, Boston Children's Hospital, with Dr. George Daley, Division of Hematology/Oncology, Boston Children's Hospital/Dana-Farber Cancer Institute, as co-mentor. My long-term career objective is to obtain a tenure-track position as a physician-scientist at an academic center with special commitment to the study, diagnosis and treatment of primary immunodeficiencies. The K08 award will provide the protected time I need to advance my training in stem cell biology, metabolism, xenografting, in situ gene editing and translational research. I will devote a minimum of 80% of my time to a focused research project investigating the molecular mechanisms underlying RD and its responsiveness to antioxidants, and will complement this with 20% of my effort dedicated to clinical care of children
with hematologic diseases. Boston Children's Hospital, Dana-Farber Cancer Institute and Harvard University are internationally recognized research institutions with renowned expert researchers in the areas of stem cell biology, hematopoiesis, metabolism, in situ gene editing, and development of xenograft-models. Furthermore, the Divisions of Pediatric Hematology/Oncology and Immunology have a distinguished record of training successful physician-scientists. I have assembled a mentoring and advisory committee, consisting of Drs. Raif Geha, David Williams, Alan Beggs, and Suneet Agarwal, who will guide my research and training experience. The expertise of my advisory committee will be complemented by a set of additional collaborators who are experts in their respective fields (Dr. Kiran Musunuru, gene editing with CRISPR/Cas9; Dr. Marcia Haigis, mitochondrial biology; and Dr. Giancarlo la Marca, Tandem Mass Spectrometry). This research proposal is part of a structured plan with scientific, technical, clinical training and career development components. The career development plan builds upon my prior research and clinical experiences with the goal of ensuring that I acquire the expertise required to become a successful, independent investigator whose focus is on translating disease mechanisms underlying immunodeficiencies into targeted therapies for patients.
描述(由申请人提供):网状细胞发育不良(RD)是严重联合免疫缺陷(SCID)最严重的形式之一,因为它影响先天性和适应性免疫。该病的特征是中性粒细胞成熟受阻、严重淋巴细胞减少和感音神经性听力损失。除非通过造血干细胞移植(HSCT)实现免疫重建,否则它在生命早期总是致命的。重度中性粒细胞减少症和淋巴细胞减少症的同时发生是婴儿期死亡风险高的原因,细菌和真菌感染的优势支持中性粒细胞减少症作为主要死亡原因。RD是由线粒体酶腺苷酸激酶2(AK 2)突变引起的,然而,AK 2缺陷如何转化为疾病病理学在很大程度上是未知的。总的来说,RD的移植结果与任何其他形式的SCID相比明显更差,这表明遗传缺陷的性质可能直接影响预后不良。因此,阐明RD的机制基础是至关重要的,以针对潜在的问题,并开发其他治疗方案。我们先前在RD的诱导多能干细胞和斑马鱼模型中的工作已经表明,造血干细胞和祖细胞分化受到损害,但可以通过用抗氧化剂治疗来挽救(Rissone,Weinacht等人,J Exp Med,2015,出版中)。这些数据导致以下假设:AK 2缺陷损害线粒体代谢并增加氧化应激,抗氧化剂改善线粒体功能并代表治疗RD患者中性粒细胞减少症和整体体质的靶向支持疗法。为了验证这一假设,我将通过定义抗氧化剂治疗前后RD的不同iPSC模型中的线粒体代谢、氧化应激和抗氧化剂储备来剖析RD的分子机制及其对抗氧化剂的反应性。为了证明体外研究结果可以转化为患者,我将开发一种基于AK 2缺陷iPSC衍生的重新指定的多能造血祖细胞移植到NSG小鼠中的RD异种移植模型,并研究抗氧化剂治疗如何影响植入,分化潜力和线粒体功能。如果我关于抗氧化剂改善线粒体功能的初步发现得到了拟议研究的支持,那么这些药物的治疗潜力可以在更广泛的疾病中得到利用,其中线粒体病理学和氧化应激正在发挥作用。我是一名儿科血液学家,专注于免疫和免疫介导的疾病,在分子微生物学,干细胞分化和重编程方面有丰富的研究经验,正在寻求K 08支持,在波士顿儿童医院免疫科Luigi Notarangelo博士和波士顿儿童医院/Dana-Farber癌症研究所血液学/肿瘤科乔治戴利博士的指导下进行指导研究,作为共同导师我的长期职业目标是获得一个终身职位,作为一个医学科学家在一个学术中心,特别致力于研究,诊断和治疗原发性免疫缺陷。K 08奖将为我提供所需的保护时间,以促进我在干细胞生物学,代谢,异种移植,原位基因编辑和转化研究方面的培训。我将把至少80%的时间投入到一个重点研究项目中,调查RD的分子机制及其对抗氧化剂的反应性,并将把20%的时间投入到儿童的临床护理中
血液系统疾病波士顿儿童医院、Dana-Farber癌症研究所和哈佛大学是国际公认的研究机构,在干细胞生物学、造血、代谢、原位基因编辑和异种移植模型开发领域拥有知名的专家研究人员。此外,儿科血液学/肿瘤学和免疫学部门在培训成功的医生科学家方面有着杰出的记录。我已经组建了一个指导和咨询委员会,由Raif Geha博士、大卫威廉姆斯博士、Alan Beggs博士和Suneet Agarwal博士组成,他们将指导我的研究和培训经验。我的咨询委员会的专业知识将得到一系列其他合作者的补充,他们是各自领域的专家(Kiran Musunuru博士,CRISPR/Cas9基因编辑; Marcia Haigis博士,线粒体生物学; Giancarlo la Marca博士,串联质谱法)。该研究计划是一个结构化计划的一部分,包括科学,技术,临床培训和职业发展组成部分。职业发展计划建立在我以前的研究和临床经验的基础上,目标是确保我获得成为一名成功的独立研究者所需的专业知识,其重点是将免疫缺陷的疾病机制转化为患者的靶向治疗。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Katja Gabriele Weinacht其他文献
Katja Gabriele Weinacht的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Katja Gabriele Weinacht', 18)}}的其他基金
Adenylate Kinase 2 Deficiency and the Failure of Myelopoiesis
腺苷酸激酶 2 缺乏和骨髓生成失败
- 批准号:
10906528 - 财政年份:2023
- 资助金额:
$ 4.94万 - 项目类别:
Adenylate Kinase 2 Deficiency and the Failure of Myelopoiesis
腺苷酸激酶 2 缺乏和骨髓生成失败
- 批准号:
10446518 - 财政年份:2022
- 资助金额:
$ 4.94万 - 项目类别:
Adenylate Kinase 2 Deficiency and the Failure of Myelopoiesis
腺苷酸激酶 2 缺乏和骨髓生成失败
- 批准号:
10583534 - 财政年份:2022
- 资助金额:
$ 4.94万 - 项目类别:
The role of oxidative stress in the pathogenesis of Reticular Dysgenesis and thetherapeutic potential of antioxidants
氧化应激在网状发育不全发病机制中的作用和抗氧化剂的治疗潜力
- 批准号:
9889872 - 财政年份:2016
- 资助金额:
$ 4.94万 - 项目类别:
The role of oxidative stress in the pathogenesis of Reticular Dysgenesis and the therapeutic potential of antioxidants
氧化应激在网状发育不全发病机制中的作用和抗氧化剂的治疗潜力
- 批准号:
9088993 - 财政年份:2016
- 资助金额:
$ 4.94万 - 项目类别:
The role of oxidative stress in the pathogenesis of Reticular Dysgenesis and thetherapeutic potential of antioxidants
氧化应激在网状发育不全发病机制中的作用和抗氧化剂的治疗潜力
- 批准号:
9262144 - 财政年份:2016
- 资助金额:
$ 4.94万 - 项目类别:
相似海外基金
Mitochondrial Creatine Kinase-deficient Mice: Effects on Adenosine Diphosphate Transport and Metabolic Homeostasis during Exercise
线粒体肌酸激酶缺陷小鼠:运动过程中对二磷酸腺苷转运和代谢稳态的影响
- 批准号:
480897-2015 - 财政年份:2015
- 资助金额:
$ 4.94万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Master's
The mechanism of adenosine diphosphate receptor mediated thrombus formation in antiphospholipid syndrome.
抗磷脂综合征中二磷酸腺苷受体介导血栓形成的机制。
- 批准号:
25670455 - 财政年份:2013
- 资助金额:
$ 4.94万 - 项目类别:
Grant-in-Aid for Challenging Exploratory Research