Accelerating biomedical image processing using massively parallel processors
使用大规模并行处理器加速生物医学图像处理
基本信息
- 批准号:9138396
- 负责人:
- 金额:$ 14.64万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-09-01 至 2017-02-28
- 项目状态:已结题
- 来源:
- 关键词:AccelerationAlgorithmsCaregiversCodeComputer softwareCountryDataDevelopmentGenerationsHealthcareHigh Performance ComputingHospitalsHousingImageImage AnalysisInternationalKnowledgeLibrariesMagnetic Resonance ImagingMedical ImagingMemoryPerformancePersonsPhaseProcessRecording of previous eventsRoentgen RaysScienceSeriesSoftware ToolsSpeedStructureStudentsSurveysTechniquesTechnologyTimeWorkWritingbioimagingdata managementimage processingimaging softwareinsightmigrationnovel strategiesopen sourceoperationparallel computerpublic health relevancesupercomputertoolweb site
项目摘要
DESCRIPTION (provided by applicant): During the last decade the quantity of bioimaging data has grown tremendously. Current estimates indicate that the average hospital in the USA houses some 665 TB of data of which approximately 80% is composed of unstructured image data from CT, MRI, and Xray machines. This huge quantity of data is expected to grow at a rate of 2040% annually, meaning hospitals could generate a total of one exabyte of new biomedical imaging data this year. The last decade has also seen the development of several new computing platforms. In particular, multicore and massively parallel processors are ubiquitous. Of these new platforms, the sheer computational power in modern Graphical Processing Units (GPUs) have created a computing era where it is feasible for a developer to purchase a personal supercomputer with 10+ teraflops of processing ability for less than $20,000. One of the most popular components of modern biomedical imaging software, the Insight ToolKit (ITK), could benefit greatly from GPU computing. There have been two attempts to implement ITK's functionality on the GPU and although there were impressive results (accelerations between 5 800x); both projects were ultimately abandoned. As it stands, our GPU accelerated ArrayFire library already contains about 26% of ITK's core functionality, more than any competing software. Within the context of this proposal we seek to expand ArrayFire's support of ITK's functionality and create tools that will help developers use ArrayFire to leverage
the massively parallel computing capabilities of GPUs from their ITK applications.
描述(由申请人提供):在过去的十年中,生物成像数据的数量有了巨大的增长。目前的估计表明,美国的平均医院拥有约665 TB的数据,其中约80%由来自CT、MRI和X射线机的非结构化图像数据组成。这一庞大的数据量预计将以每年20 - 40%的速度增长,这意味着医院今年可以产生总计1 EB的新生物医学成像数据。在过去的十年中,还出现了几种新的计算平台。特别是,多核和大规模并行处理器无处不在。在这些新平台中,现代图形处理单元(GPU)的绝对计算能力创造了一个计算时代,在这个时代,开发人员可以以不到20,000美元的价格购买具有10万亿次浮点运算能力的个人超级计算机。Insight ToolKit(ITK)是现代生物医学成像软件中最受欢迎的组件之一,它可以从GPU计算中受益匪浅。在GPU上实现ITK的功能有两次尝试,虽然有令人印象深刻的结果(加速在5到800倍之间),但这两个项目最终都被放弃了。目前,我们的GPU加速ArrayFire库已经包含了ITK约26%的核心功能,超过了任何竞争软件。在本提案的背景下,我们寻求扩展ArrayFire对ITK功能的支持,并创建帮助开发人员使用ArrayFire来利用的工具
GPU的大规模并行计算能力。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
John Melonakos其他文献
John Melonakos的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('John Melonakos', 18)}}的其他基金
GPU-based Computational Advancements for Neuroscience MATLAB Programs
基于 GPU 的神经科学 MATLAB 程序计算进步
- 批准号:
8003884 - 财政年份:2010
- 资助金额:
$ 14.64万 - 项目类别:
相似海外基金
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
$ 14.64万 - 项目类别:
Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
- 批准号:
2338816 - 财政年份:2024
- 资助金额:
$ 14.64万 - 项目类别:
Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
$ 14.64万 - 项目类别:
Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
- 批准号:
2348261 - 财政年份:2024
- 资助金额:
$ 14.64万 - 项目类别:
Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
- 批准号:
2348346 - 财政年份:2024
- 资助金额:
$ 14.64万 - 项目类别:
Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
- 批准号:
2348457 - 财政年份:2024
- 资助金额:
$ 14.64万 - 项目类别:
Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
$ 14.64万 - 项目类别:
Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 14.64万 - 项目类别:
Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
- 批准号:
2339669 - 财政年份:2024
- 资助金额:
$ 14.64万 - 项目类别:
Continuing Grant
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 14.64万 - 项目类别:
Research Grant