Modular index theory and spectral flow
模索引理论和谱流
基本信息
- 批准号:41224-2007
- 负责人:
- 金额:$ 1.75万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2007
- 资助国家:加拿大
- 起止时间:2007-01-01 至 2008-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
A "linear operator" is a mathematical object which (in many cases) can be represented by a square array (or"matrix") of numbers just like a spreadsheet. By a process called "matrix multiplication", such operators"operate" on vertical lists of numbers (called "vectors") to produce new vertical lists (new vectors). If A is the symbol for an operator and X is the symbol for a vertical list (vector), then we denote the newly transformedlist (vector) by AX. It is especially important to find particular vectors for the operator A, say Y, and particularnumbers (depending on A and Y) say 2 for example so that AY is 2 times Y, in symbols AY=2Y. In this case, we would say that 2 is in the "spectrum" of A. That is, the spectrum of A is the collection of all such numbers n for whichthere is some vector, say Z so that AZ=nZ. Of course different operators will usually have different spectrums. Examples of such operators and their spectrums occur so often in scientific and economic applications thatstudents are routinely taught the rudiments of the subject in first year university (or even high school) in theguise of "Matrix Theory" or "Linear Algebra". At a deeper level, these operators are crucial to the understanding of quantum mechanics and all the myriad applications of that field. I plan to continue my detailed study of how the spectrums of such operators change continuously as the operators themselves change continuously. This is the notion of "flowing spectrum" or "Spectral Flow". In particular, it is important to be able to calculate how much of the spectrum changes from negative to positive,without having to go through the hugely time-consuming process of calculating all the spectrums at each instant of the flow. My co-authors and I have been developing formulas which do this in many diverse cases. WARNING: The above descriptions are highly over-simplified for the purposes of exposition.
“线性运算符”是一个数学对象,它(在许多情况下)可以像电子表格一样用数字的正方形数组(或“矩阵”)表示。通过称为“矩阵乘法”的过程,这样的运算符对数字的垂直列表(称为“向量”)进行“操作”以产生新的垂直列表(新向量)。如果A是一个操作符的符号,X是一个垂直列表(向量)的符号,那么我们用AX表示新转换的列表(向量)。特别重要的是找到运算符A的特定向量,比如Y,以及特定的数(取决于A和Y),比如2,使得AY是2乘以Y,符号为AY=2Y。在这种情况下,我们可以说2在A的“谱”中。也就是说,A的谱是所有这样的数n的集合,对于这些数n,有某个向量,比如Z,使得AZ=nZ。当然,不同的运营商通常会有不同的频谱。 这种算子及其频谱的例子经常出现在科学和经济应用中,以至于学生们在大学一年级(甚至高中)经常以“矩阵理论”或“线性代数”的名义教授这门学科的基础知识。在更深的层次上,这些算子对于理解量子力学和该领域的所有无数应用至关重要。 我计划继续详细研究这些运营商的频谱如何随着运营商本身的不断变化而不断变化。这就是“流动频谱”或“频谱流”的概念。特别重要的是,能够计算频谱从负到正的变化量,而不必经历在流动的每个时刻计算所有频谱的非常耗时的过程。我和我的合著者一直在开发在许多不同情况下都能做到这一点的公式。 注:上述描述是高度简化的说明的目的。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Phillips, John其他文献
Efficacy of Intratympanic OTO-104 for the Treatment of Ménière's Disease: The Outcome of Three Randomized, Double-Blind, Placebo-Controlled Studies.
- DOI:
10.1097/mao.0000000000003886 - 发表时间:
2023-07-01 - 期刊:
- 影响因子:2.1
- 作者:
Phillips, John;Mikulec, Anthony A.;Robinson, James M.;Skarinsky, David;Anderson, Jeffery J. - 通讯作者:
Anderson, Jeffery J.
Validation of a Novel Ultrasound Simulation Model for Teaching Foundation-Level Ultrasonography Skills to Veterinary Students
- DOI:
10.3138/jvme-2020-0123 - 发表时间:
2021-06-02 - 期刊:
- 影响因子:1
- 作者:
Wichtel, Jocelyn;Zur Linden, Alex;Phillips, John - 通讯作者:
Phillips, John
Orthognathic Surgery for Patients with Cleft Lip and Palate
- DOI:
10.1016/j.cps.2018.11.002 - 发表时间:
2019-04-01 - 期刊:
- 影响因子:2.3
- 作者:
Roy, Andree-Anne;Rtshiladze, Michael Alexander;Phillips, John - 通讯作者:
Phillips, John
Pulmonary Embolism Current Role of Catheter Treatment Options and Operative Thrombectomy
- DOI:
10.1016/j.suc.2017.11.009 - 发表时间:
2018-04-01 - 期刊:
- 影响因子:3.1
- 作者:
Jolly, Michael;Phillips, John - 通讯作者:
Phillips, John
Generation of normative pediatric skull models for use in cranial vault remodeling procedures
- DOI:
10.1007/s00381-011-1630-7 - 发表时间:
2012-03-01 - 期刊:
- 影响因子:1.4
- 作者:
Saber, Nikoo R.;Phillips, John;Kim, Peter C. W. - 通讯作者:
Kim, Peter C. W.
Phillips, John的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Phillips, John', 18)}}的其他基金
Index Theory and Spectral Flow for Non-unital Spectral Triples and Twisted Spectral Triples
非单位谱三元组和扭曲谱三元组的指数理论和谱流
- 批准号:
41224-2012 - 财政年份:2016
- 资助金额:
$ 1.75万 - 项目类别:
Discovery Grants Program - Individual
Index Theory and Spectral Flow for Non-unital Spectral Triples and Twisted Spectral Triples
非单位谱三元组和扭曲谱三元组的指数理论和谱流
- 批准号:
41224-2012 - 财政年份:2015
- 资助金额:
$ 1.75万 - 项目类别:
Discovery Grants Program - Individual
Index Theory and Spectral Flow for Non-unital Spectral Triples and Twisted Spectral Triples
非单位谱三元组和扭曲谱三元组的指数理论和谱流
- 批准号:
41224-2012 - 财政年份:2014
- 资助金额:
$ 1.75万 - 项目类别:
Discovery Grants Program - Individual
Index Theory and Spectral Flow for Non-unital Spectral Triples and Twisted Spectral Triples
非单位谱三元组和扭曲谱三元组的指数理论和谱流
- 批准号:
41224-2012 - 财政年份:2013
- 资助金额:
$ 1.75万 - 项目类别:
Discovery Grants Program - Individual
Index Theory and Spectral Flow for Non-unital Spectral Triples and Twisted Spectral Triples
非单位谱三元组和扭曲谱三元组的指数理论和谱流
- 批准号:
41224-2012 - 财政年份:2012
- 资助金额:
$ 1.75万 - 项目类别:
Discovery Grants Program - Individual
Modular index theory and spectral flow
模索引理论和谱流
- 批准号:
41224-2007 - 财政年份:2011
- 资助金额:
$ 1.75万 - 项目类别:
Discovery Grants Program - Individual
Modular index theory and spectral flow
模索引理论和谱流
- 批准号:
41224-2007 - 财政年份:2010
- 资助金额:
$ 1.75万 - 项目类别:
Discovery Grants Program - Individual
Molecular genetic analysis of aging and reactive oxygen metabolism
衰老与活性氧代谢的分子遗传学分析
- 批准号:
9722-2004 - 财政年份:2010
- 资助金额:
$ 1.75万 - 项目类别:
Discovery Grants Program - Individual
Modular index theory and spectral flow
模索引理论和谱流
- 批准号:
41224-2007 - 财政年份:2009
- 资助金额:
$ 1.75万 - 项目类别:
Discovery Grants Program - Individual
Molecular genetic analysis of aging and reactive oxygen metabolism
衰老与活性氧代谢的分子遗传学分析
- 批准号:
9722-2004 - 财政年份:2009
- 资助金额:
$ 1.75万 - 项目类别:
Discovery Grants Program - Individual
相似国自然基金
统计过程控制图设计理论的深入研究
- 批准号:11071128
- 批准年份:2010
- 资助金额:27.0 万元
- 项目类别:面上项目
机器具有中断条件下的随机调度问题
- 批准号:70671043
- 批准年份:2006
- 资助金额:19.0 万元
- 项目类别:面上项目
相似海外基金
Operator algebras and index theory in quantum walks and quantum information theory
量子行走和量子信息论中的算子代数和索引论
- 批准号:
24K06756 - 财政年份:2024
- 资助金额:
$ 1.75万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Equivariant index theory of infinite-dimensional manifolds and related topics
无限维流形等变指数理论及相关主题
- 批准号:
23K12970 - 财政年份:2023
- 资助金额:
$ 1.75万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Effectiveness and Implementation of a Research Tested Mobile Produce Market Designed to Improve Diet in Underserved Communities
旨在改善服务不足社区饮食的经过研究测试的移动农产品市场的有效性和实施
- 批准号:
10842494 - 财政年份:2023
- 资助金额:
$ 1.75万 - 项目类别:
Factors influencing positive change in glycemic control and Type 2 diabetes self-management behavior among Latinx individuals in a digital storytelling intervention: A mixed-methods study
在数字讲故事干预中影响拉丁裔个体血糖控制和 2 型糖尿病自我管理行为积极变化的因素:一项混合方法研究
- 批准号:
10675951 - 财政年份:2023
- 资助金额:
$ 1.75万 - 项目类别:
Smart Walk: A culturally tailored smartphone-delivered physical activity intervention to reduce cardiometabolic disease risk among African American women
Smart Walk:一种根据文化定制的智能手机提供的身体活动干预措施,以降低非裔美国女性的心脏代谢疾病风险
- 批准号:
10639951 - 财政年份:2023
- 资助金额:
$ 1.75万 - 项目类别:
Development of personalized healthy food incentives to improve diet and cardiovascular risk
制定个性化健康食品激励措施以改善饮食和心血管风险
- 批准号:
10663538 - 财政年份:2023
- 资助金额:
$ 1.75万 - 项目类别:
Efficacy of a Novel Digital Platform to Scale-Up a Personalized Prenatal Weight Gain Intervention Using Control Systems Methodology
新型数字平台使用控制系统方法扩大个性化产前体重增加干预的功效
- 批准号:
10562400 - 财政年份:2023
- 资助金额:
$ 1.75万 - 项目类别:
K-theory of Operator Algebras and Index Theory on Spaces of Singularities
算子代数的K理论与奇点空间索引论
- 批准号:
2247322 - 财政年份:2023
- 资助金额:
$ 1.75万 - 项目类别:
Continuing Grant
Getzler rescaling in index theory
指数理论中的盖茨勒缩放
- 批准号:
572728-2022 - 财政年份:2022
- 资助金额:
$ 1.75万 - 项目类别:
University Undergraduate Student Research Awards














{{item.name}}会员




