Negative correlations in combinatorics and statistical mechanics
组合数学和统计力学中的负相关
基本信息
- 批准号:105392-2007
- 负责人:
- 金额:$ 1.24万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2007
- 资助国家:加拿大
- 起止时间:2007-01-01 至 2008-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
In 1847, Kirchhoff derived a formula for the effective conductance of an electrical network as a function of the conductances of each of its branch elements. This formula is a quotient of two polynomials, in which the numerator and denominator encode information about the minimally connected subgraphs of the network. The physical properties of electrical networks can thus be interepreted as quantitative statements about these minimally connected subgraphs, or spanning trees. For example, if the conductance of some branch is increased then the effective conductance of the whole network does not decrease. This is known as ``Rayleigh monotonicity''. It translates into the statement that, for any two distinct branches, if one chooses a spanning tree at random then these branches are ``negatively correlated'' -- the presence of one of them in the tree makes the other one less likely. An analogue of this phenomenon has been shown to hold for abstract combinatorial geometries much more general than electrical networks.Recently, it has been conjectured that an even stronger negative correlation property might hold for networks. Instead of choosing a spanning tree at random we choose a spanning forest (an acyclic but perhaps not connected subnetwork) instead. Negative correlation of distinct branches is conjectured to hold in this case as well. This implies the Rayleigh monotonicity property. If true, this negative correlation property has the potential to explain numerical observations about networks that go back to the late 1960s. This would constitute a fundamentally deeper understanding of the quantitative structural properties of networks in general.
1847年,Kirchhoff导出了一个网络有效电导公式,它是每个支路元素的电导的函数。这个公式是两个多项式的商,其中分子和分母编码关于网络的最小连通子图的信息。因此,电网络的物理性质可以解释为关于这些最小连通子图或生成树的定量陈述。例如,如果某个支路的电导增加,则整个网络的有效电导不会减少。这就是我们所知的‘Rayleigh单调性’。对于任何两个不同的支路,它可以翻译成这样的陈述如果随机地选择一棵生成树,那么这些分支是“负相关的”--在树中出现其中一棵使得另一棵不太可能出现。与此类似的现象已被证明适用于比电网络更一般的抽象组合几何。最近,有人猜测网络可能具有更强的负相关性。*我们不是随机选择一棵生成树,而是选择一个生成林(一个无环但可能不连通的子网络)。在这种情况下,不同分支的负相关也被推测为成立。这意味着瑞利单调性性质。如果为真,这种负相关性性质有可能解释追溯到20世纪60年代末关于网络的数值观察。这将构成对一般网络数量结构属性的根本更深层次的理解。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Wagner, David其他文献
Hopper: Modeling and Detecting Lateral Movement
料斗:建模和检测横向运动
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
Ho, Grant;Dhiman, Mayank;Akhawe, Devdatta;Paxson, Vern;Savage, Stefan;Voelker, Geoffrey M.;Wagner, David - 通讯作者:
Wagner, David
Situated Perspectives on Creating Mathematics Tasks for Peace and Sustainability
- DOI:
10.1007/s42330-020-00083-w - 发表时间:
2020-03-25 - 期刊:
- 影响因子:1.5
- 作者:
Yaro, Kwesi;Amoah, Emmanuel;Wagner, David - 通讯作者:
Wagner, David
Simultaneous noninvasive recording of skin sympathetic nerve activity and electrocardiogram.
- DOI:
10.1016/j.hrthm.2016.09.019 - 发表时间:
2017-01 - 期刊:
- 影响因子:5.5
- 作者:
Doytchinova, Anisiia;Hassel, Jonathan L.;Yuan, Yuan;Lin, Hongbo;Yin, Dechun;Adams, David;Straka, Susan;Wright, Keith;Smith, Kimberly;Wagner, David;Shen, Changyu;Salanova, Vicenta;Meshberger, Chad;Chen, Lan S.;Kincaid, John C.;Coffey, Arthur C.;Wu, Gang;Li, Yan;Kovacs, Richard J.;Everett, Thomas H.;Victor, Ronald;Cha, Yong-Mei;Lin, Shien-Fong;Chen, Peng-Sheng - 通讯作者:
Chen, Peng-Sheng
Privacy Controls for Always-Listening Devices
始终监听设备的隐私控制
- DOI:
10.1145/3368860.3368867 - 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
Malkin, Nathan;Egelman, Serge;Wagner, David - 通讯作者:
Wagner, David
Appraising lexical bundles in mathematics classroom discourse: obligation and choice
- DOI:
10.1007/s10649-010-9240-y - 发表时间:
2010-09-01 - 期刊:
- 影响因子:3.2
- 作者:
Herbel-Eisenmann, Beth;Wagner, David - 通讯作者:
Wagner, David
Wagner, David的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Wagner, David', 18)}}的其他基金
Algebraic combinatorics of graphs and matroids
图和拟阵的代数组合
- 批准号:
105392-2013 - 财政年份:2017
- 资助金额:
$ 1.24万 - 项目类别:
Discovery Grants Program - Individual
Algebraic combinatorics of graphs and matroids
图和拟阵的代数组合
- 批准号:
105392-2013 - 财政年份:2015
- 资助金额:
$ 1.24万 - 项目类别:
Discovery Grants Program - Individual
Algebraic combinatorics of graphs and matroids
图和拟阵的代数组合
- 批准号:
105392-2013 - 财政年份:2014
- 资助金额:
$ 1.24万 - 项目类别:
Discovery Grants Program - Individual
Algebraic combinatorics of graphs and matroids
图和拟阵的代数组合
- 批准号:
105392-2013 - 财政年份:2013
- 资助金额:
$ 1.24万 - 项目类别:
Discovery Grants Program - Individual
Negative correlations in combinatorics and statistical mechanics
组合数学和统计力学中的负相关
- 批准号:
105392-2007 - 财政年份:2011
- 资助金额:
$ 1.24万 - 项目类别:
Discovery Grants Program - Individual
Negative correlations in combinatorics and statistical mechanics
组合数学和统计力学中的负相关
- 批准号:
105392-2007 - 财政年份:2010
- 资助金额:
$ 1.24万 - 项目类别:
Discovery Grants Program - Individual
Negative correlations in combinatorics and statistical mechanics
组合数学和统计力学中的负相关
- 批准号:
105392-2007 - 财政年份:2009
- 资助金额:
$ 1.24万 - 项目类别:
Discovery Grants Program - Individual
Negative correlations in combinatorics and statistical mechanics
组合数学和统计力学中的负相关
- 批准号:
105392-2007 - 财政年份:2008
- 资助金额:
$ 1.24万 - 项目类别:
Discovery Grants Program - Individual
Enumerative and algebraic combinatorics of graphs and partial orders
图和偏序的枚举和代数组合
- 批准号:
105392-2002 - 财政年份:2006
- 资助金额:
$ 1.24万 - 项目类别:
Discovery Grants Program - Individual
Enumerative and algebraic combinatorics of graphs and partial orders
图和偏序的枚举和代数组合
- 批准号:
105392-2002 - 财政年份:2005
- 资助金额:
$ 1.24万 - 项目类别:
Discovery Grants Program - Individual
相似海外基金
Structure theory for measure-preserving systems, additive combinatorics, and correlations of multiplicative functions
保测系统的结构理论、加法组合学和乘法函数的相关性
- 批准号:
2347850 - 财政年份:2024
- 资助金额:
$ 1.24万 - 项目类别:
Continuing Grant
Exploration of spin topology, emergent inductance, and electron correlations in transition metal oxides
过渡金属氧化物中自旋拓扑、涌现电感和电子相关性的探索
- 批准号:
22KF0124 - 财政年份:2023
- 资助金额:
$ 1.24万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Living with Spontaneous Coronary Artery Dissection: A multicentre, patient-informed investigation
自发性冠状动脉夹层的生活:一项多中心、患者知情的调查
- 批准号:
481005 - 财政年份:2023
- 资助金额:
$ 1.24万 - 项目类别:
Exploring quantum correlations in superconducting terahertz emitter
探索超导太赫兹发射器中的量子相关性
- 批准号:
23K17747 - 财政年份:2023
- 资助金额:
$ 1.24万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
Q-CALC (Quantum Contextual Artificial intelligence for Long-range Correlations)
Q-CALC(用于远程关联的量子上下文人工智能)
- 批准号:
10085547 - 财政年份:2023
- 资助金额:
$ 1.24万 - 项目类别:
Small Business Research Initiative
Accessing and Expanding Natural Products Chemical Diversity by Big-data Analysis and Biosynthetic Investigation
通过大数据分析和生物合成研究获取和扩大天然产物化学多样性
- 批准号:
10714466 - 财政年份:2023
- 资助金额:
$ 1.24万 - 项目类别:
Epigenetic Dysregulation, Genetic Mutations, And Outcomes Of Lymphoid Malignancies Related To Agent Orange And Burn Pit Exposures Compared To Unexposed Case-Matched Controls
与未暴露的病例匹配对照相比,与橙剂和烧伤坑暴露相关的表观遗传失调、基因突变和淋巴恶性肿瘤的结果
- 批准号:
10587826 - 财政年份:2023
- 资助金额:
$ 1.24万 - 项目类别:
The effect of aging on neurotransmitters and motor performance in a primate model
衰老对灵长类动物模型中神经递质和运动表现的影响
- 批准号:
10573386 - 财政年份:2023
- 资助金额:
$ 1.24万 - 项目类别:
Ceramides as Novel Mediators of Tubular Metabolic Dysfunction Driving Kidney Injury
神经酰胺作为肾小管代谢功能障碍驱动肾损伤的新型调节剂
- 批准号:
10677394 - 财政年份:2023
- 资助金额:
$ 1.24万 - 项目类别:
Immune mechanisms of pain of the IL-23IL-17 Axis in Inflammatory Arthritis
炎症性关节炎中 IL-23IL-17 轴疼痛的免疫机制
- 批准号:
10861492 - 财政年份:2023
- 资助金额:
$ 1.24万 - 项目类别: