Topological groups and flows, and associated function and operator algebras
拓扑群和流,以及相关函数和算子代数
基本信息
- 批准号:7857-2006
- 负责人:
- 金额:$ 0.58万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2007
- 资助国家:加拿大
- 起止时间:2007-01-01 至 2008-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
My ongoing research is centred around topological groups, compact right topological groups, flows and C*-algebras. These mathematical concepts are widely studied by mathematicians; they are also very useful to physicists, statisticians and social scientists. My study of these concepts uses powerful tools from harmonic analysis, topological dynamics and functional analysis. One area of my work has its origins at the beginning of this century, in the work of Harald Bohr on almost periodic functions on the real line. Since then the subject has grown enormously and now includes the study of many algebras of 'almost periodic type' on groups and semigroups G. As well as the tools mentioned above, a unifying concept in this work is the appropriate notion of compactification of G, which is like the Stone-Cech compactification, except that account is taken also of the algebraic structure of G. The structure of the relevant compactifications plays an important role in determining functional analytic and dynamical properties of the algebras and of G. In other ongoing work, I study C*-algebras (closed algebras of operators on Hilbert space) generated from operator equations (analogous to UV =lambda VU, the equation generating the much -studied 'irrational rotation' C*-algebras) and the connection of these algebras with some special groups and flows; there are many interesting unfinished aspects of this work. A further important aspect of my work is the study of examples, structure and other properties of flows and compact right topological groups. A notable success in this area was the discovery of Haar measure on compact right topological groups - that is, a probability measure on the group that is both left and right invariant, and unique as such; this discovery was made in joint work with coauthor J.S. Pym.
我正在进行的研究是围绕拓扑群,紧右拓扑群,流和C*-代数。这些数学概念被数学家广泛研究;它们对物理学家、统计学家和社会科学家也非常有用。我的研究这些概念使用强大的工具,从谐波分析,拓扑动力学和功能分析。我的工作的一个领域有它的起源在本世纪初,在工作的哈拉尔德玻尔几乎周期函数的真实的线。从那时起,这门学科得到了巨大的发展,现在包括了对群和半群G上的“概周期型”代数的研究。除了上面提到的工具之外,本工作中的一个统一概念是G的紧化的适当概念,它类似于Stone-Cech紧化,除了还考虑了G的代数结构。相关紧化的结构在确定代数和G的泛函、解析和动力学性质中起着重要的作用。 在其他正在进行的工作中,我研究C*-代数(封闭代数的运营商希尔伯特空间)产生的运营商方程(类似于UV =lambda VU,方程产生的研究'无理旋转' C*-代数)和连接这些代数与一些特殊的群体和流动;有许多有趣的未完成的方面这项工作。 另一个重要方面,我的工作是研究的例子,结构和其他性质的流动和紧凑的权利拓扑群。一个显着的成功,在这一领域是发现哈尔措施紧右拓扑群-也就是说,一个概率措施的一组,这是左和右不变的,唯一的,因为这样;这一发现是在联合工作与合著者J. S。皮姆
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Milnes, Paul其他文献
Milnes, Paul的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Milnes, Paul', 18)}}的其他基金
Topological groups and flows, and associated function and operator algebras
拓扑群和流,以及相关函数和算子代数
- 批准号:
7857-2006 - 财政年份:2010
- 资助金额:
$ 0.58万 - 项目类别:
Discovery Grants Program - Individual
Topological groups and flows, and associated function and operator algebras
拓扑群和流,以及相关函数和算子代数
- 批准号:
7857-2006 - 财政年份:2009
- 资助金额:
$ 0.58万 - 项目类别:
Discovery Grants Program - Individual
Topological groups and flows, and associated function and operator algebras
拓扑群和流,以及相关函数和算子代数
- 批准号:
7857-2006 - 财政年份:2008
- 资助金额:
$ 0.58万 - 项目类别:
Discovery Grants Program - Individual
Topological groups and flows, and associated function and operator algebras
拓扑群和流,以及相关函数和算子代数
- 批准号:
7857-2006 - 财政年份:2006
- 资助金额:
$ 0.58万 - 项目类别:
Discovery Grants Program - Individual
Topological groups and flows, and associated function and operator algebras
拓扑群和流,以及相关函数和算子代数
- 批准号:
7857-2001 - 财政年份:2005
- 资助金额:
$ 0.58万 - 项目类别:
Discovery Grants Program - Individual
Topological groups and flows, and associated function and operator algebras
拓扑群和流,以及相关函数和算子代数
- 批准号:
7857-2001 - 财政年份:2004
- 资助金额:
$ 0.58万 - 项目类别:
Discovery Grants Program - Individual
Topological groups and flows, and associated function and operator algebras
拓扑群和流,以及相关函数和算子代数
- 批准号:
7857-2001 - 财政年份:2003
- 资助金额:
$ 0.58万 - 项目类别:
Discovery Grants Program - Individual
Topological groups and flows, and associated function and operator algebras
拓扑群和流,以及相关函数和算子代数
- 批准号:
7857-2001 - 财政年份:2002
- 资助金额:
$ 0.58万 - 项目类别:
Discovery Grants Program - Individual
Topological groups and flows, and associated function and operator algebras
拓扑群和流,以及相关函数和算子代数
- 批准号:
7857-2001 - 财政年份:2001
- 资助金额:
$ 0.58万 - 项目类别:
Discovery Grants Program - Individual
Topological groups and flows, and associated function and operator algebras
拓扑群和流,以及相关函数和算子代数
- 批准号:
7857-1997 - 财政年份:2000
- 资助金额:
$ 0.58万 - 项目类别:
Discovery Grants Program - Individual
相似海外基金
Topological groups and flows, and associated function and operator algebras
拓扑群和流,以及相关函数和算子代数
- 批准号:
7857-2006 - 财政年份:2010
- 资助金额:
$ 0.58万 - 项目类别:
Discovery Grants Program - Individual
Topological groups and flows, and associated function and operator algebras
拓扑群和流,以及相关函数和算子代数
- 批准号:
7857-2006 - 财政年份:2009
- 资助金额:
$ 0.58万 - 项目类别:
Discovery Grants Program - Individual
Topological groups and flows, and associated function and operator algebras
拓扑群和流,以及相关函数和算子代数
- 批准号:
7857-2006 - 财政年份:2008
- 资助金额:
$ 0.58万 - 项目类别:
Discovery Grants Program - Individual
Topological groups and flows, and associated function and operator algebras
拓扑群和流,以及相关函数和算子代数
- 批准号:
7857-2006 - 财政年份:2006
- 资助金额:
$ 0.58万 - 项目类别:
Discovery Grants Program - Individual
Topological groups and flows, and associated function and operator algebras
拓扑群和流,以及相关函数和算子代数
- 批准号:
7857-2001 - 财政年份:2005
- 资助金额:
$ 0.58万 - 项目类别:
Discovery Grants Program - Individual
Topological groups and flows, and associated function and operator algebras
拓扑群和流,以及相关函数和算子代数
- 批准号:
7857-2001 - 财政年份:2004
- 资助金额:
$ 0.58万 - 项目类别:
Discovery Grants Program - Individual
Topological groups and flows, and associated function and operator algebras
拓扑群和流,以及相关函数和算子代数
- 批准号:
7857-2001 - 财政年份:2003
- 资助金额:
$ 0.58万 - 项目类别:
Discovery Grants Program - Individual
Topological groups and flows, and associated function and operator algebras
拓扑群和流,以及相关函数和算子代数
- 批准号:
7857-2001 - 财政年份:2002
- 资助金额:
$ 0.58万 - 项目类别:
Discovery Grants Program - Individual
Topological groups and flows, and associated function and operator algebras
拓扑群和流,以及相关函数和算子代数
- 批准号:
7857-2001 - 财政年份:2001
- 资助金额:
$ 0.58万 - 项目类别:
Discovery Grants Program - Individual
Topological groups and flows, and associated function and operator algebras
拓扑群和流,以及相关函数和算子代数
- 批准号:
7857-1997 - 财政年份:2000
- 资助金额:
$ 0.58万 - 项目类别:
Discovery Grants Program - Individual