Analytic multifunctions and operator theory

解析多功能和算子理论

基本信息

  • 批准号:
    249678-2006
  • 负责人:
  • 金额:
    $ 0.58万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2007
  • 资助国家:
    加拿大
  • 起止时间:
    2007-01-01 至 2008-12-31
  • 项目状态:
    已结题

项目摘要

My primary research interest is in the theory of analytic multifunctions and its applications in operator theory. The main objects of my research are to use the method of analytic multifunctions to the other domains.   Some of the problems I will look at are the following: (a) Spectral variation problems for algebraic elements in Banach algebra. Find the best possible estimate for Hausdorff distance and the other distances between the spectra of two algebraic elements. (b) I will continue to study the spectrum of a closed interpolated operator and the constancy problem of the spectrum. I will also study the particular case of the multifunctions induced by the semi-groups of partial differential operators and find the applications in the spectral theory of semi-groups. (c) Study the analytic multifunctions on the disk. Extend some well-known inequalities from complex analysis and potential theory to analytic multifunctions and then find the applications back to classic complex analysis. (d) Study the orthogonality between the range and kernel of the elementary operators in Hilbert space and in an abstract Banach algebra. Extend Putnam-Fuglede theorem and second degree Putnam -Fuglede theorem to the non-normal operators for elementary operators. The techniques involved come from the theory of analytic multifunctions, functional analysis, complex analysis,  Banach algebra, spectral theory, and operator theory.
我的主要研究兴趣是解析多函数理论及其在算子理论中的应用。本文的主要研究目标是将解析多元函数的方法应用于其它领域。 一些问题,我会看看如下:(一)谱变分问题的代数元素在Banach代数。求两个代数元素的谱之间的Hausdorff距离和其他距离的最佳估计。(b)我将继续研究闭插值算子的谱和谱的恒常性问题。我还将研究由偏微分算子半群诱导的集值函数的特殊情况,并发现其在半群谱理论中的应用。(c)研究圆盘上的解析多元函数。将复分析和位势理论中的一些著名不等式推广到解析集值函数,并将其应用于经典复分析。(d)研究了Hilbert空间和抽象Banach代数中初等算子的值域与核之间的正交性。将Putnam-Fuglede定理和二次Putnam-Fuglede定理推广到初等算子的非正规算子。所涉及的技术来自解析多函数理论、泛函分析、复分析、Banach代数、谱理论和算子理论。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Chen, Yin其他文献

Characterization of the Autographa californica nucleopolyhedrovirus ubiquitin gene promoter
苜蓿银纹夜蛾核多角体病毒泛素基因启动子的表征
A novel structurally identified epitope delivered by macrophage membrane-coated PLGA nanoparticles elicits protection against Pseudomonas aeruginosa.
  • DOI:
    10.1186/s12951-022-01725-x
  • 发表时间:
    2022-12-14
  • 期刊:
  • 影响因子:
    10.2
  • 作者:
    Gao, Chen;Chen, Yin;Cheng, Xin;Zhang, Yi;Zhang, Yueyue;Wang, Ying;Cui, Zhiyuan;Liao, Yaling;Luo, Ping;Wu, Weihui;Wang, Cheng;Zeng, Hao;Zou, Quanming;Gu, Jiang
  • 通讯作者:
    Gu, Jiang
A new automated quality assessment algorithm for image fusion
  • DOI:
    10.1016/j.imavis.2007.12.002
  • 发表时间:
    2009-09-02
  • 期刊:
  • 影响因子:
    4.7
  • 作者:
    Chen, Yin;Blum, Rick S.
  • 通讯作者:
    Blum, Rick S.
Irradiation pretreatment enhances the therapeutic efficacy of platelet-membrane-camouflaged antitumor nanoparticles
辐射预处理增强血小板膜伪装抗肿瘤纳米颗粒的治疗效果
  • DOI:
    10.1186/s12951-020-00660-z
  • 发表时间:
    2020-07-20
  • 期刊:
  • 影响因子:
    10.2
  • 作者:
    Chen, Yin;Shen, Xue;Wang, Junping
  • 通讯作者:
    Wang, Junping
Effects and parameters of community-based exercise on motor symptoms in Parkinson's disease: a meta-analysis.
  • DOI:
    10.1186/s12883-022-03027-z
  • 发表时间:
    2022-12-29
  • 期刊:
  • 影响因子:
    2.6
  • 作者:
    Yang, Chun-Lan;Huang, Jia-Peng;Wang, Ting-Ting;Tan, Ying-Chao;Chen, Yin;Zhao, Zi-Qi;Qu, Chao-Hua;Qu, Yun
  • 通讯作者:
    Qu, Yun

Chen, Yin的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Chen, Yin', 18)}}的其他基金

Analytic multifunctions and operator theory
解析多功能和算子理论
  • 批准号:
    249678-2006
  • 财政年份:
    2010
  • 资助金额:
    $ 0.58万
  • 项目类别:
    Discovery Grants Program - Individual
Analytic multifunctions and operator theory
解析多功能和算子理论
  • 批准号:
    249678-2006
  • 财政年份:
    2009
  • 资助金额:
    $ 0.58万
  • 项目类别:
    Discovery Grants Program - Individual
Analytic multifunctions and operator theory
解析多功能和算子理论
  • 批准号:
    249678-2006
  • 财政年份:
    2008
  • 资助金额:
    $ 0.58万
  • 项目类别:
    Discovery Grants Program - Individual
Analytic multifunctions and operator theory
解析多功能和算子理论
  • 批准号:
    249678-2006
  • 财政年份:
    2006
  • 资助金额:
    $ 0.58万
  • 项目类别:
    Discovery Grants Program - Individual
Analytic multifunctions and spectral theory
解析多功能和谱理论
  • 批准号:
    249678-2002
  • 财政年份:
    2005
  • 资助金额:
    $ 0.58万
  • 项目类别:
    Discovery Grants Program - Individual
Analytic multifunctions and spectral theory
解析多功能和谱理论
  • 批准号:
    249678-2002
  • 财政年份:
    2004
  • 资助金额:
    $ 0.58万
  • 项目类别:
    Discovery Grants Program - Individual
Analytic multifunctions and spectral theory
解析多功能和谱理论
  • 批准号:
    249678-2002
  • 财政年份:
    2003
  • 资助金额:
    $ 0.58万
  • 项目类别:
    Discovery Grants Program - Individual
Analytic multifunctions and spectral theory
解析多功能和谱理论
  • 批准号:
    249678-2002
  • 财政年份:
    2002
  • 资助金额:
    $ 0.58万
  • 项目类别:
    Discovery Grants Program - Individual

相似海外基金

Applied analysis: Mathematical imaging, image multifunctions, fractal-based methods in analysis
应用分析:数学成像、图像多功能、基于分形的分析方法
  • 批准号:
    RGPIN-2017-03793
  • 财政年份:
    2021
  • 资助金额:
    $ 0.58万
  • 项目类别:
    Discovery Grants Program - Individual
Applied analysis: Mathematical imaging, image multifunctions, fractal-based methods in analysis
应用分析:数学成像、图像多功能、基于分形的分析方法
  • 批准号:
    RGPIN-2017-03793
  • 财政年份:
    2020
  • 资助金额:
    $ 0.58万
  • 项目类别:
    Discovery Grants Program - Individual
Applied analysis: Mathematical imaging, image multifunctions, fractal-based methods in analysis
应用分析:数学成像、图像多功能、基于分形的分析方法
  • 批准号:
    RGPIN-2017-03793
  • 财政年份:
    2019
  • 资助金额:
    $ 0.58万
  • 项目类别:
    Discovery Grants Program - Individual
Applied analysis: Mathematical imaging, image multifunctions, fractal-based methods in analysis
应用分析:数学成像、图像多功能、基于分形的分析方法
  • 批准号:
    RGPIN-2017-03793
  • 财政年份:
    2018
  • 资助金额:
    $ 0.58万
  • 项目类别:
    Discovery Grants Program - Individual
Applied analysis: Mathematical imaging, image multifunctions, fractal-based methods in analysis
应用分析:数学成像、图像多功能、基于分形的分析方法
  • 批准号:
    RGPIN-2017-03793
  • 财政年份:
    2017
  • 资助金额:
    $ 0.58万
  • 项目类别:
    Discovery Grants Program - Individual
"Mathematical imaging, image multifunctions, diagnostically lossless image compression, fractal-based methods of analysis and approximation"
“数学成像、图像多功能、诊断无损图像压缩、基于分形的分析和近似方法”
  • 批准号:
    106270-2012
  • 财政年份:
    2016
  • 资助金额:
    $ 0.58万
  • 项目类别:
    Discovery Grants Program - Individual
"Mathematical imaging, image multifunctions, diagnostically lossless image compression, fractal-based methods of analysis and approximation"
“数学成像、图像多功能、诊断无损图像压缩、基于分形的分析和近似方法”
  • 批准号:
    106270-2012
  • 财政年份:
    2015
  • 资助金额:
    $ 0.58万
  • 项目类别:
    Discovery Grants Program - Individual
"Mathematical imaging, image multifunctions, diagnostically lossless image compression, fractal-based methods of analysis and approximation"
“数学成像、图像多功能、诊断无损图像压缩、基于分形的分析和近似方法”
  • 批准号:
    106270-2012
  • 财政年份:
    2014
  • 资助金额:
    $ 0.58万
  • 项目类别:
    Discovery Grants Program - Individual
"Mathematical imaging, image multifunctions, diagnostically lossless image compression, fractal-based methods of analysis and approximation"
“数学成像、图像多功能、诊断无损图像压缩、基于分形的分析和近似方法”
  • 批准号:
    106270-2012
  • 财政年份:
    2013
  • 资助金额:
    $ 0.58万
  • 项目类别:
    Discovery Grants Program - Individual
"Mathematical imaging, image multifunctions, diagnostically lossless image compression, fractal-based methods of analysis and approximation"
“数学成像、图像多功能、诊断无损图像压缩、基于分形的分析和近似方法”
  • 批准号:
    106270-2012
  • 财政年份:
    2012
  • 资助金额:
    $ 0.58万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了