Topics in machine learning and data privacy
机器学习和数据隐私主题
基本信息
- 批准号:2480-2006
- 负责人:
- 金额:$ 2.77万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2007
- 资助国家:加拿大
- 起止时间:2007-01-01 至 2008-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
My research is in the area of machine learning/ data mining, known also as knowledge discovery. I am interested in increasing the capacity of the existing learning systems, and in making them more suitable for using text data. I am also working on responsible ways of using this technology: hence my interest in data privacy. Computer's ability of using data about individuals to learn new information about them is an important factor in their privacy. My main idea here is to develop tools that will give people control over their data: everyone should be able to decide who can use their information and for what purpose. One way to achieve this is to control the applications software, and allow it to access and process the data only according to the authorizations of individuals who own the information. I propose to use formal methods, i.e. proving program properties, to guarantee that software that claims to respect user authorizations, indeed does so. The second topic of my proposed research are new ways in which documents should be represented so that they can be efficiently categorized by a computer. My approach is to further explore linguistic properties of documents by looking at their structure, terminology, and the meaning of the terms they contain. I am particularly hopeful that this will improve learning performance of specialized categorization tasks, particularly when data is sparse, e.g. in sentence classification. My final area of interest is scalability of relational learning systems: enabling them to learn from large, real-life datasets. To cope with the information overflow phenomenon, we must employ knowledge information extraction and discovery tools. An identified gap in the knowledge discovery research is the scalability of tools, especially the relational techniques. And yet relational data abounds in the socially most relevant applications: systems biology and pharmacology, and social networks. Hence the importance of relational scaling-up research for knowledge discovery.
我的研究领域是机器学习/数据挖掘,也称为知识发现。我感兴趣的是增加现有学习系统的容量,并使它们更适合使用文本数据。我也在研究如何以负责任的方式使用这项技术:因此我对数据隐私感兴趣。计算机使用个人数据来了解有关他们的新信息的能力是他们隐私的一个重要因素。我在这里的主要想法是开发工具,让人们控制他们的数据:每个人都应该能够决定谁可以使用他们的信息,以及用于什么目的。实现这一点的一种方法是控制应用软件,并允许它仅根据拥有信息的个人的授权访问和处理数据。我建议使用形式化的方法,即证明程序属性,来保证声称尊重用户授权的软件确实如此。我提出的研究的第二个主题是新的方法,应该表示文件,使他们可以有效地分类的计算机。我的方法是通过研究文档的结构、术语和它们所包含的术语的含义来进一步探索文档的语言属性。我特别希望这将提高专门分类任务的学习性能,特别是当数据稀疏时,例如在句子分类中。我感兴趣的最后一个领域是关系学习系统的可扩展性:使它们能够从大型的真实数据集中学习。为了科普信息溢出现象,我们必须采用知识信息提取和发现工具。在知识发现研究中的一个确定的差距是工具的可扩展性,特别是关系技术。然而,关系型数据在与社会最相关的应用中比比皆是:系统生物学和药理学,以及社交网络。因此,关系放大研究对知识发现的重要性。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Matwin, Stanislaw其他文献
Matwin, Stanislaw的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Matwin, Stanislaw', 18)}}的其他基金
Recommender System for Electronic Components
电子元件推荐系统
- 批准号:
398619-2010 - 财政年份:2010
- 资助金额:
$ 2.77万 - 项目类别:
Engage Grants Program
Topics in machine learning and data privacy
机器学习和数据隐私主题
- 批准号:
2480-2006 - 财政年份:2010
- 资助金额:
$ 2.77万 - 项目类别:
Discovery Grants Program - Individual
Intelligent monitoring and analysis of the global navigation satellite system signal
全球导航卫星系统信号智能监测与分析
- 批准号:
403014-2010 - 财政年份:2010
- 资助金额:
$ 2.77万 - 项目类别:
Engage Grants Program
Topics in machine learning and data privacy
机器学习和数据隐私主题
- 批准号:
2480-2006 - 财政年份:2009
- 资助金额:
$ 2.77万 - 项目类别:
Discovery Grants Program - Individual
Data mining for training and assessment through digital games
通过数字游戏进行数据挖掘进行培训和评估
- 批准号:
336071-2006 - 财政年份:2008
- 资助金额:
$ 2.77万 - 项目类别:
Idea to Innovation
Topics in machine learning and data privacy
机器学习和数据隐私主题
- 批准号:
2480-2006 - 财政年份:2008
- 资助金额:
$ 2.77万 - 项目类别:
Discovery Grants Program - Individual
Data mining for training and assessment through digital games
通过数字游戏进行数据挖掘进行培训和评估
- 批准号:
336071-2006 - 财政年份:2007
- 资助金额:
$ 2.77万 - 项目类别:
Idea to Innovation
Topics in machine learning and data privacy
机器学习和数据隐私主题
- 批准号:
2480-2006 - 财政年份:2006
- 资助金额:
$ 2.77万 - 项目类别:
Discovery Grants Program - Individual
Data mining for training and assessment through digital games
通过数字游戏进行数据挖掘进行培训和评估
- 批准号:
336071-2006 - 财政年份:2006
- 资助金额:
$ 2.77万 - 项目类别:
Idea to Innovation
Application-Centric Checkable Enablement of Privacy and Trust (ACCEPT)
以应用程序为中心的可检查隐私和信任启用 (ACCEPT)
- 批准号:
311524-2004 - 财政年份:2005
- 资助金额:
$ 2.77万 - 项目类别:
Idea to Innovation
相似国自然基金
Understanding structural evolution of galaxies with machine learning
- 批准号:n/a
- 批准年份:2022
- 资助金额:10.0 万元
- 项目类别:省市级项目
非标准随机调度模型的最优动态策略
- 批准号:71071056
- 批准年份:2010
- 资助金额:28.0 万元
- 项目类别:面上项目
微生物发酵过程的自组织建模与优化控制
- 批准号:60704036
- 批准年份:2007
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
相似海外基金
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
$ 2.77万 - 项目类别:
Continuing Grant
RII Track-4:NSF: Physics-Informed Machine Learning with Organ-on-a-Chip Data for an In-Depth Understanding of Disease Progression and Drug Delivery Dynamics
RII Track-4:NSF:利用器官芯片数据进行物理信息机器学习,深入了解疾病进展和药物输送动力学
- 批准号:
2327473 - 财政年份:2024
- 资助金额:
$ 2.77万 - 项目类别:
Standard Grant
CC* Campus Compute: UTEP Cyberinfrastructure for Scientific and Machine Learning Applications
CC* 校园计算:用于科学和机器学习应用的 UTEP 网络基础设施
- 批准号:
2346717 - 财政年份:2024
- 资助金额:
$ 2.77万 - 项目类别:
Standard Grant
Learning to create Intelligent Solutions with Machine Learning and Computer Vision: A Pathway to AI Careers for Diverse High School Students
学习利用机器学习和计算机视觉创建智能解决方案:多元化高中生的人工智能职业之路
- 批准号:
2342574 - 财政年份:2024
- 资助金额:
$ 2.77万 - 项目类别:
Standard Grant
Collaborative Research: Conference: DESC: Type III: Eco Edge - Advancing Sustainable Machine Learning at the Edge
协作研究:会议:DESC:类型 III:生态边缘 - 推进边缘的可持续机器学习
- 批准号:
2342498 - 财政年份:2024
- 资助金额:
$ 2.77万 - 项目类别:
Standard Grant
Excellence in Research:Towards Data and Machine Learning Fairness in Smart Mobility
卓越研究:实现智能移动中的数据和机器学习公平
- 批准号:
2401655 - 财政年份:2024
- 资助金额:
$ 2.77万 - 项目类别:
Standard Grant
I-Corps: Translation potential of using machine learning to predict oxaliplatin chemotherapy benefit in early colon cancer
I-Corps:利用机器学习预测奥沙利铂化疗对早期结肠癌疗效的转化潜力
- 批准号:
2425300 - 财政年份:2024
- 资助金额:
$ 2.77万 - 项目类别:
Standard Grant
CAREER: Mitigating the Lack of Labeled Training Data in Machine Learning Based on Multi-level Optimization
职业:基于多级优化缓解机器学习中标记训练数据的缺乏
- 批准号:
2339216 - 财政年份:2024
- 资助金额:
$ 2.77万 - 项目类别:
Continuing Grant
Postdoctoral Fellowship: OPP-PRF: Leveraging Community Structure Data and Machine Learning Techniques to Improve Microbial Functional Diversity in an Arctic Ocean Ecosystem Model
博士后奖学金:OPP-PRF:利用群落结构数据和机器学习技术改善北冰洋生态系统模型中的微生物功能多样性
- 批准号:
2317681 - 财政年份:2024
- 资助金额:
$ 2.77万 - 项目类别:
Standard Grant
Accelerated discovery of ultra-fast ionic conductors with machine learning
通过机器学习加速超快离子导体的发现
- 批准号:
24K08582 - 财政年份:2024
- 资助金额:
$ 2.77万 - 项目类别:
Grant-in-Aid for Scientific Research (C)