Elliptic curve cryptography - implementation and security issues
椭圆曲线密码学 - 实现和安全问题
基本信息
- 批准号:298601-2007
- 负责人:
- 金额:$ 1.02万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2007
- 资助国家:加拿大
- 起止时间:2007-01-01 至 2008-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Privacy and security are two obvious necessities of modern life. Yet, when it comes to protecting digital data, these are new concepts that are still not well understood. The invention of public-key cryptography in 1978 made such endeavours become a reality, so that now we have a practical way of performing securely many electronic tasks where a proof of identity is essential. Signatures, authentications, key agreements are nowadays part of our daily electronic life, be it in an online transaction or when withdrawing money from an ATM.Still many problems remain, also because hackers have increasingly more sophisticated attacks.In this line of thought, we require from the public-key primitives that perform these tasks that they achieve a standard level of security, with the fastest possible implementation.My research involves speeding up these computational implementations through the use of elliptic curves, which are now faster than RSA.In another direction I will also investigate the security of elliptic curves and make sure that nobody can produce "phony curves" which are easily crackable.
隐私和安全是现代生活的两个显而易见的必需品。然而,当谈到保护数字数据时,这些新概念仍然没有得到很好的理解。1978年公钥密码术的发明使这种努力成为现实,因此现在我们有了一种实用的方法来安全地执行许多电子任务,其中身份证明是必不可少的。签名、认证、密钥协议是当今我们日常电子生活的一部分,无论是在网上交易中,还是在从自动取款机取款时。仍然存在许多问题,也是因为黑客的攻击越来越复杂。在这种思路下,我们要求执行这些任务的公钥基元达到标准的安全级别,并以尽可能快的速度实现。我的研究涉及通过使用椭圆曲线来加速这些计算实现,现在椭圆曲线可能比RSA更快。在另一个方向,我还将研究椭圆曲线的安全性,并确保没有人能产生容易被破解的“伪曲线”。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Sica, Francesco其他文献
The sustainability of urban renewal projects: a model for economic multi-criteria analysis
- DOI:
10.1108/jpif-01-2017-0003 - 发表时间:
2017-01-01 - 期刊:
- 影响因子:1.3
- 作者:
Nestico, Antonio;Sica, Francesco - 通讯作者:
Sica, Francesco
A model to support the public administration decisions for the investments selection on historic buildings
- DOI:
10.1016/j.culher.2018.03.008 - 发表时间:
2018-09-01 - 期刊:
- 影响因子:3.1
- 作者:
Nestico, Antonio;Morano, Pierluigi;Sica, Francesco - 通讯作者:
Sica, Francesco
Sica, Francesco的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Sica, Francesco', 18)}}的其他基金
Elliptic curve cryptography - implementation and security issues
椭圆曲线密码学 - 实现和安全问题
- 批准号:
298601-2007 - 财政年份:2011
- 资助金额:
$ 1.02万 - 项目类别:
Discovery Grants Program - Individual
Elliptic curve cryptography - implementation and security issues
椭圆曲线密码学 - 实现和安全问题
- 批准号:
298601-2007 - 财政年份:2010
- 资助金额:
$ 1.02万 - 项目类别:
Discovery Grants Program - Individual
Elliptic curve cryptography - implementation and security issues
椭圆曲线密码学 - 实现和安全问题
- 批准号:
298601-2007 - 财政年份:2009
- 资助金额:
$ 1.02万 - 项目类别:
Discovery Grants Program - Individual
Elliptic curve cryptography - implementation and security issues
椭圆曲线密码学 - 实现和安全问题
- 批准号:
298601-2007 - 财政年份:2009
- 资助金额:
$ 1.02万 - 项目类别:
Discovery Grants Program - Individual
Elliptic curve cryptography - implementation and security issues
椭圆曲线密码学 - 实现和安全问题
- 批准号:
298601-2007 - 财政年份:2008
- 资助金额:
$ 1.02万 - 项目类别:
Discovery Grants Program - Individual
Aspects of implementation and security in elliptic curve cryptosystems
椭圆曲线密码系统的实现和安全性方面
- 批准号:
298601-2004 - 财政年份:2006
- 资助金额:
$ 1.02万 - 项目类别:
Discovery Grants Program - Individual
Aspects of implementation and security in elliptic curve cryptosystems
椭圆曲线密码系统的实现和安全性方面
- 批准号:
298601-2004 - 财政年份:2005
- 资助金额:
$ 1.02万 - 项目类别:
Discovery Grants Program - Individual
Aspects of implementation and security in elliptic curve cryptosystems
椭圆曲线密码系统的实现和安全性方面
- 批准号:
298601-2004 - 财政年份:2004
- 资助金额:
$ 1.02万 - 项目类别:
Discovery Grants Program - Individual
相似海外基金
Isogeny Graphs and Elliptic Curve Cryptography
同源图和椭圆曲线密码学
- 批准号:
534199-2019 - 财政年份:2022
- 资助金额:
$ 1.02万 - 项目类别:
Postgraduate Scholarships - Doctoral
Isogeny Graphs and Elliptic Curve Cryptography
同源图和椭圆曲线密码学
- 批准号:
534199-2019 - 财政年份:2021
- 资助金额:
$ 1.02万 - 项目类别:
Postgraduate Scholarships - Doctoral
Isogeny Graphs and Elliptic Curve Cryptography
同源图和椭圆曲线密码学
- 批准号:
534199-2019 - 财政年份:2020
- 资助金额:
$ 1.02万 - 项目类别:
Postgraduate Scholarships - Doctoral
Isogeny Graphs and Elliptic Curve Cryptography
同源图和椭圆曲线密码学
- 批准号:
534199-2019 - 财政年份:2019
- 资助金额:
$ 1.02万 - 项目类别:
Postgraduate Scholarships - Doctoral
Security Analysis of Elliptic/Hyperelliptic Curve Cryptosystems Against Cover Attack
椭圆/超椭圆曲线密码系统对抗掩护攻击的安全性分析
- 批准号:
15K00022 - 财政年份:2015
- 资助金额:
$ 1.02万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
New Low-complexity, Reliable, and Leakage Resilient Architectures for Elliptic Curve Cryptography and Pairings
用于椭圆曲线加密和配对的新型低复杂性、可靠且防泄漏架构
- 批准号:
439202-2013 - 财政年份:2013
- 资助金额:
$ 1.02万 - 项目类别:
Postdoctoral Fellowships
Fast computation of isogenies and applications to elliptic curve cryptography
同基因的快速计算及其在椭圆曲线密码学中的应用
- 批准号:
408563-2011 - 财政年份:2013
- 资助金额:
$ 1.02万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Security Analysis of Elliptic Curve Cryptography using Groebner Basis
基于 Groebner 基础的椭圆曲线密码学安全性分析
- 批准号:
25540047 - 财政年份:2013
- 资助金额:
$ 1.02万 - 项目类别:
Grant-in-Aid for Challenging Exploratory Research
Security Evaluation for Elliptic Curve Pairing-based Cryptography with Conjugate Rational Points by Distributed and Parallelized Experiments
基于椭圆曲线配对的共轭有理点密码的分布式并行实验安全性评估
- 批准号:
25280047 - 财政年份:2013
- 资助金额:
$ 1.02万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Fast computation of isogenies and applications to elliptic curve cryptography
同基因的快速计算及其在椭圆曲线密码学中的应用
- 批准号:
408563-2011 - 财政年份:2012
- 资助金额:
$ 1.02万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral