New machine learning methods for collaborative filtering, document retrieval and image retrieval
用于协同过滤、文档检索和图像检索的新机器学习方法
基本信息
- 批准号:356701-2007
- 负责人:
- 金额:$ 7.07万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Strategic Projects Supplemental Competition
- 财政年份:2007
- 资助国家:加拿大
- 起止时间:2007-01-01 至 2008-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The research will use novel machine learning algorithms recently developed at the University of Toronto toimprove several aspects of web-based systems.Collaborative filtering systems recommend products such as books or DVD's to a user based on similaritiesbetween that user and other users whose preferences are known. There are many different ways of using thesesimilarities and new, non-linear machine learning methods are already more accurate than the methodscurrently in use. These methods will be developed further.A newly discovered method called "semantic hashing" is much faster than existing methods at retrievingdocuments that are similar to a query document. Semantic hashing uses machine learning to associate anaddress with each document in the database in such a way that similar documents have addresses that differ byonly a few bits. Given the address of the query document, similar documents can than be found very rapidly bysimply looking at neighboring addresses. The research will improve the ability of the machine learningalgorithms to assign similar addresses to similar documents. It will also apply similar methods to imageretrieval. This will involve learning features of images that are as informative about the content of an image aswords are about the content of a document.New methods will be developed for learning features from large databases of unlabeled satellite images, so thatclassifiers for types of ground cover can be learned with fewer labeled training examples. The classifiers willalso be improved by learning to use the contextual information provided by the labels of nearby regions.
这项研究将使用多伦多大学最近开发的新型机器学习算法来改进基于网络的系统的几个方面。协同过滤系统根据用户与其他偏好已知的用户之间的相似性向用户推荐书籍或DVD等产品。有许多不同的方法可以使用这些相似性,新的非线性机器学习方法已经比目前使用的方法更准确。这些方法将得到进一步的发展。一种新发现的称为“语义散列”的方法在检索与查询文档相似的文档时比现有方法快得多。语义散列使用机器学习将地址与数据库中的每个文档相关联,使得类似文档的地址仅相差几位。给定查询文档的地址,类似的文档可以通过简单地查看相邻的地址而非常快速地找到。该研究将提高机器学习算法为类似文档分配类似地址的能力。它也将应用类似的方法图像检索。这将涉及到学习图像的特征,这些特征对图像内容的信息量就像文字对文档内容的信息量一样。将开发新的方法来学习来自未标记卫星图像的大型数据库的特征,以便用更少的标记训练样本来学习地面覆盖类型的分类器。分类器也将通过学习使用由附近区域的标签提供的上下文信息来改进。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Hinton, Geoffrey其他文献
Unsupervised discovery of nonlinear structure using contrastive backpropagation
- DOI:
10.1207/s15516709cog0000_76 - 发表时间:
2006-07-01 - 期刊:
- 影响因子:2.5
- 作者:
Hinton, Geoffrey;Osindero, Simon;Teh, Yee-Whye - 通讯作者:
Teh, Yee-Whye
Visualizing non-metric similarities in multiple maps
- DOI:
10.1007/s10994-011-5273-4 - 发表时间:
2012-04-01 - 期刊:
- 影响因子:7.5
- 作者:
van der Maaten, Laurens;Hinton, Geoffrey - 通讯作者:
Hinton, Geoffrey
Acoustic Modeling Using Deep Belief Networks
- DOI:
10.1109/tasl.2011.2109382 - 发表时间:
2012-01-01 - 期刊:
- 影响因子:0
- 作者:
Mohamed, Abdel-rahman;Dahl, George E.;Hinton, Geoffrey - 通讯作者:
Hinton, Geoffrey
Semantic hashing
- DOI:
10.1016/j.ijar.2008.11.006 - 发表时间:
2009-07-01 - 期刊:
- 影响因子:3.9
- 作者:
Salakhutdinov, Ruslan;Hinton, Geoffrey - 通讯作者:
Hinton, Geoffrey
Deep Learning for AI
- DOI:
10.1145/3448250 - 发表时间:
2021-07-01 - 期刊:
- 影响因子:22.7
- 作者:
Bengio, Yoshua;Lecun, Yann;Hinton, Geoffrey - 通讯作者:
Hinton, Geoffrey
Hinton, Geoffrey的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Hinton, Geoffrey', 18)}}的其他基金
Machine Learning for Perception
感知机器学习
- 批准号:
9185-2012 - 财政年份:2016
- 资助金额:
$ 7.07万 - 项目类别:
Discovery Grants Program - Individual
Machine Learning for Perception
感知机器学习
- 批准号:
9185-2012 - 财政年份:2015
- 资助金额:
$ 7.07万 - 项目类别:
Discovery Grants Program - Individual
Nomination for the Hezberg Medal
赫兹伯格奖章提名
- 批准号:
396276-2010 - 财政年份:2015
- 资助金额:
$ 7.07万 - 项目类别:
Gerhard Herzberg Canada Gold Medal for Science and Engineering
Nomination for the Hezberg Medal
赫兹伯格奖章提名
- 批准号:
396276-2010 - 财政年份:2014
- 资助金额:
$ 7.07万 - 项目类别:
Gerhard Herzberg Canada Gold Medal for Science and Engineering
Machine Learning for Perception
感知机器学习
- 批准号:
9185-2012 - 财政年份:2014
- 资助金额:
$ 7.07万 - 项目类别:
Discovery Grants Program - Individual
Nomination for the Hezberg Medal
赫兹伯格奖章提名
- 批准号:
396276-2010 - 财政年份:2013
- 资助金额:
$ 7.07万 - 项目类别:
Gerhard Herzberg Canada Gold Medal for Science and Engineering
Machine Learning for Perception
感知机器学习
- 批准号:
9185-2012 - 财政年份:2013
- 资助金额:
$ 7.07万 - 项目类别:
Discovery Grants Program - Individual
Machine Learning for Perception
感知机器学习
- 批准号:
9185-2012 - 财政年份:2012
- 资助金额:
$ 7.07万 - 项目类别:
Discovery Grants Program - Individual
Nomination for the Hezberg Medal
赫兹伯格奖章提名
- 批准号:
396276-2010 - 财政年份:2012
- 资助金额:
$ 7.07万 - 项目类别:
Gerhard Herzberg Canada Gold Medal for Science and Engineering
Canada Research Chair in Machine Learning
加拿大机器学习研究主席
- 批准号:
1000201274-2001 - 财政年份:2012
- 资助金额:
$ 7.07万 - 项目类别:
Canada Research Chairs
相似国自然基金
Understanding structural evolution of galaxies with machine learning
- 批准号:n/a
- 批准年份:2022
- 资助金额:10.0 万元
- 项目类别:省市级项目
非标准随机调度模型的最优动态策略
- 批准号:71071056
- 批准年份:2010
- 资助金额:28.0 万元
- 项目类别:面上项目
微生物发酵过程的自组织建模与优化控制
- 批准号:60704036
- 批准年份:2007
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
相似海外基金
High-Valent Iron-Oxo Species for Activation of Strong CH Bonds: New Designs with Novel Ab Initio Methods and Machine Learning
用于激活强CH键的高价铁氧物种:采用新颖的从头算方法和机器学习的新设计
- 批准号:
24K17694 - 财政年份:2024
- 资助金额:
$ 7.07万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Is evolution predictable? Unlocking fundamental biological insights using new machine learning methods
进化是可预测的吗?
- 批准号:
MR/X033880/1 - 财政年份:2024
- 资助金额:
$ 7.07万 - 项目类别:
Fellowship
Development of a new EBSD analysis method combining dynamical scattering theory and machine learning
结合动态散射理论和机器学习开发新的 EBSD 分析方法
- 批准号:
23H01276 - 财政年份:2023
- 资助金额:
$ 7.07万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
New fast beam loss monitor system for Diamon-ll and machine learning applications
适用于 Diamon-ll 和机器学习应用的新型快速光束损失监测系统
- 批准号:
2878859 - 财政年份:2023
- 资助金额:
$ 7.07万 - 项目类别:
Studentship
SBIR Phase I: Proximate Wind Forecasts: A New Machine Learning Approach to Increasing Wind Energy Production
SBIR 第一阶段:风力预测:增加风能产量的新机器学习方法
- 批准号:
2309367 - 财政年份:2023
- 资助金额:
$ 7.07万 - 项目类别:
Standard Grant
Magnetic Resonances in Nonlinear Dielectric Nanostructures: New Light-Matter Interactions and Machine Learning Enhanced Design
非线性介电纳米结构中的磁共振:新的光-物质相互作用和机器学习增强设计
- 批准号:
2240562 - 财政年份:2023
- 资助金额:
$ 7.07万 - 项目类别:
Standard Grant
New approaches for leveraging single-cell data to identify disease-critical genes and gene sets
利用单细胞数据识别疾病关键基因和基因集的新方法
- 批准号:
10768004 - 财政年份:2023
- 资助金额:
$ 7.07万 - 项目类别:
Whole genome sequence interpretation for lipids to discover new genes and mechanisms for coronary artery disease
脂质的全基因组序列解释,以发现冠状动脉疾病的新基因和机制
- 批准号:
10722515 - 财政年份:2023
- 资助金额:
$ 7.07万 - 项目类别:
SBIR Phase I: Predictive Analytics and Machine Learning Modeling for New Patient Cancer Referrals
SBIR 第一阶段:针对新癌症患者转诊的预测分析和机器学习建模
- 批准号:
2304498 - 财政年份:2023
- 资助金额:
$ 7.07万 - 项目类别:
Standard Grant
A New Machine Learning Framework for Single-Cell Multi-Omics Bioinformatics
单细胞多组学生物信息学的新机器学习框架
- 批准号:
2405416 - 财政年份:2023
- 资助金额:
$ 7.07万 - 项目类别:
Standard Grant