Singularities of Schubert varieties
舒伯特变体的奇点
基本信息
- 批准号:341744-2007
- 负责人:
- 金额:$ 0.87万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2007
- 资助国家:加拿大
- 起止时间:2007-01-01 至 2008-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The study of symmetries arises in almost all areas of mathematics, and in particular in geometry. In the mathematical language, symmetries usually are described by means of a group acting on an object. As an elementary example one could consider the group of Euclidean motions on the plane, generated by rotations and translations. One can generalize this picture to study the action of Lie groups or (as in the case of this proposal) algebraic groups on vector spaces (like the plane) or more complicated geometric objects. Symmetry groups arise in numerous natural sciences, be it physics (e.g. quantum or classical mechanics), or chemistry (e.g. the symmetries of crystals), or biology (e.g. the symmetries of protein structures).Symmetries, however, also play a very important role in mathematics itself. The topic of this proposal falls into the realms of algebraic geometry. One could argue that the most fundamental object in algebraic geometry is projective space (e.g. the set of lines through the origin in a plane). It is homogeneous, i.e. it looks everywhere the same, because for any two points there is a symmetry of projective space moving one point to the other (much like any point on a sphere may be rotated to any other point on the same sphere). It is possible to generalize this notion and obtain a large class of algebraic varieties, the so called projective homogeneous spaces. These spaces are tightly connected to the algebraic group used to define them, and the group acts as symmetries on these spaces.Understanding (the geometry of) these spaces provides insight into the structure of these groups, and is connected to e.g. their representation theory among other things, an important subject with a wide array of applications. Using these spaces as model spaces, hopefully this also leads to a better understanding of other algebraic geometric objects. In this proposed project we try to understand the geometry of certain subsets (called Schubert varieties) of these spaces which arise naturally and can be shown to be fundamental for understanding these homogeneous spaces.
对称的研究几乎出现在数学的所有领域,尤其是几何领域。在数学语言中,对称性通常用一群作用于一个物体的方式来描述。作为一个基本的例子,我们可以考虑平面上由旋转和平移产生的一组欧几里得运动。我们可以推广这幅图来研究李群或(在这个提议的情况下)代数群在向量空间(如平面)或更复杂的几何物体上的作用。对称群出现在许多自然科学中,无论是物理学(如量子力学或经典力学),化学(如晶体的对称性),还是生物学(如蛋白质结构的对称性)。然而,对称性在数学本身也扮演着非常重要的角色。这个建议的主题属于代数几何的领域。有人可能会说,代数几何中最基本的对象是射影空间(例如,平面上经过原点的直线集合)。它是齐次的,也就是说,它在任何地方看起来都是一样的,因为对于任何两点,都有一个对称的投影空间,从一个点移动到另一个点(很像球体上的任何点都可以旋转到同一球体上的任何其他点)。推广这一概念并得到一大类代数变体,即所谓的射影齐次空间是可能的。这些空间与用来定义它们的代数群紧密相连,而代数群在这些空间上起着对称的作用。理解这些空间(几何)可以洞察这些群体的结构,并与它们的表示理论等相关,这是一个具有广泛应用的重要主题。使用这些空间作为模型空间,希望这也能让我们更好地理解其他代数几何对象。在这个提议的项目中,我们试图理解这些空间的某些子集(称为舒伯特变体)的几何形状,这些子集自然产生,可以被证明是理解这些齐次空间的基础。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Kuttler, Jochen其他文献
Kuttler, Jochen的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Kuttler, Jochen', 18)}}的其他基金
Algebraic Transformation Groups
代数变换群
- 批准号:
RGPIN-2017-05405 - 财政年份:2021
- 资助金额:
$ 0.87万 - 项目类别:
Discovery Grants Program - Individual
Algebraic Transformation Groups
代数变换群
- 批准号:
RGPIN-2017-05405 - 财政年份:2020
- 资助金额:
$ 0.87万 - 项目类别:
Discovery Grants Program - Individual
Algebraic Transformation Groups
代数变换群
- 批准号:
RGPIN-2017-05405 - 财政年份:2019
- 资助金额:
$ 0.87万 - 项目类别:
Discovery Grants Program - Individual
Algebraic Transformation Groups
代数变换群
- 批准号:
RGPIN-2017-05405 - 财政年份:2018
- 资助金额:
$ 0.87万 - 项目类别:
Discovery Grants Program - Individual
Algebraic Transformation Groups
代数变换群
- 批准号:
RGPIN-2017-05405 - 财政年份:2017
- 资助金额:
$ 0.87万 - 项目类别:
Discovery Grants Program - Individual
Algebraic Transformation Groups
代数变换群
- 批准号:
341744-2012 - 财政年份:2016
- 资助金额:
$ 0.87万 - 项目类别:
Discovery Grants Program - Individual
Algebraic Transformation Groups
代数变换群
- 批准号:
341744-2012 - 财政年份:2015
- 资助金额:
$ 0.87万 - 项目类别:
Discovery Grants Program - Individual
Algebraic Transformation Groups
代数变换群
- 批准号:
341744-2012 - 财政年份:2014
- 资助金额:
$ 0.87万 - 项目类别:
Discovery Grants Program - Individual
Algebraic Transformation Groups
代数变换群
- 批准号:
341744-2012 - 财政年份:2013
- 资助金额:
$ 0.87万 - 项目类别:
Discovery Grants Program - Individual
Algebraic Transformation Groups
代数变换群
- 批准号:
341744-2012 - 财政年份:2012
- 资助金额:
$ 0.87万 - 项目类别:
Discovery Grants Program - Individual
相似国自然基金
Schubert演算的组合学
- 批准号:12371329
- 批准年份:2023
- 资助金额:43.5 万元
- 项目类别:面上项目
Schubert多项式理论
- 批准号:12001398
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Singularities of Schubert varieties
舒伯特变体的奇点
- 批准号:
341744-2007 - 财政年份:2011
- 资助金额:
$ 0.87万 - 项目类别:
Discovery Grants Program - Individual
Singularities of Schubert varieties
舒伯特变体的奇点
- 批准号:
341744-2007 - 财政年份:2010
- 资助金额:
$ 0.87万 - 项目类别:
Discovery Grants Program - Individual
Singularities of Schubert varieties
舒伯特变体的奇点
- 批准号:
341744-2007 - 财政年份:2009
- 资助金额:
$ 0.87万 - 项目类别:
Discovery Grants Program - Individual
Singularities of Schubert varieties
舒伯特变体的奇点
- 批准号:
341744-2007 - 财政年份:2008
- 资助金额:
$ 0.87万 - 项目类别:
Discovery Grants Program - Individual
Torus actions, cohomology and singularities of Schubert varieties
舒伯特簇的环面作用、上同调和奇点
- 批准号:
9078-2002 - 财政年份:2007
- 资助金额:
$ 0.87万 - 项目类别:
Discovery Grants Program - Individual
Torus actions, cohomology and singularities of Schubert varieties
舒伯特簇的环面作用、上同调和奇点
- 批准号:
9078-2002 - 财政年份:2006
- 资助金额:
$ 0.87万 - 项目类别:
Discovery Grants Program - Individual
Torus actions, cohomology and singularities of Schubert varieties
舒伯特簇的环面作用、上同调和奇点
- 批准号:
9078-2002 - 财政年份:2005
- 资助金额:
$ 0.87万 - 项目类别:
Discovery Grants Program - Individual
Torus actions, cohomology and singularities of Schubert varieties
舒伯特簇的环面作用、上同调和奇点
- 批准号:
9078-2002 - 财政年份:2004
- 资助金额:
$ 0.87万 - 项目类别:
Discovery Grants Program - Individual
Torus actions, cohomology and singularities of Schubert varieties
舒伯特簇的环面作用、上同调和奇点
- 批准号:
9078-2002 - 财政年份:2003
- 资助金额:
$ 0.87万 - 项目类别:
Discovery Grants Program - Individual
Torus actions, cohomology and singularities of Schubert varieties
舒伯特簇的环面作用、上同调和奇点
- 批准号:
9078-2002 - 财政年份:2002
- 资助金额:
$ 0.87万 - 项目类别:
Discovery Grants Program - Individual














{{item.name}}会员




