Inference strategies with applications and boostrapping
具有应用程序和 boostrapping 的推理策略
基本信息
- 批准号:98832-2006
- 负责人:
- 金额:$ 0.87万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2007
- 资助国家:加拿大
- 起止时间:2007-01-01 至 2008-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This research is primarily concerned with the development of optimal tools to help in the analysis of complex data. For example, how can DNA microarray data from various sources be combined, showing the promise of immense possible gains in statistical inferential accuracy? How can uncertain prior information be incorporated into the current estimation process? How can uncertainty concerning the appropriate statistical model-estimator to use in representing the data sampling process be dealt with? These questions, and many more, can be better understood through appropriate statistical inferential tools. The proposed research demonstrates well-defined data-basesd estimation techniques. The focus of this research program is on the development and application of statistical inference methodologies which performs better than the existing methods. Statistical inference is the process of reasoning from observed data back to its underlying mechanism. Shrinkage and empirical Bayes methods provide useful techniques for combining data from various sources. B. Efron (Newsletter of the Royal Statistical Society January, 1995) predicted that shrinkage and empirical Bayes methodology would be a major area of statistical research for the early 21st century. More recently, several authors considered a new approach to likelihood that weigh components differentially. Interestingly, this leads to shrinkage type estimators that also feature prominently in empirical Bayes methodology. New scientific technology, exemplified by DNA microarrays, has suddenly revived interest in these methods. These techniques will advance knowledge because of their applicability to a larger class of problems thereby extending our ability to solve advanced statistical inference problems in health-care, environmetrics, engineering and social sciences.
这项研究主要涉及开发最佳工具,以帮助分析复杂数据。例如,如何将来自各种来源的DNA微阵列数据组合在一起,显示出统计推断准确性的巨大收益的希望?如何将不确定的事先信息纳入当前估计过程中?如何处理用于代表数据采样过程的适当统计模型估计器的不确定性?可以通过适当的统计推论工具更好地理解这些问题,还有更多问题。拟议的研究表明了定义明确的数据基本估计技术。该研究计划的重点是统计推断方法的开发和应用,该方法的性能比现有方法更好。统计推断是从观察到的数据回到其潜在机制的推理过程。收缩和经验贝叶斯方法为结合来自各种来源的数据提供了有用的技术。 B. Efron(皇家统计学会的通讯,1995年1月)预测,收缩和经验贝叶斯方法论将是21世纪初期统计研究的主要领域。最近,一些作者考虑了一种新的可能性方法,即重量分量有所不同。有趣的是,这导致收缩型估计量在经验贝叶斯方法论中也很有特征。由DNA微阵列举例说明的新科学技术突然恢复了对这些方法的兴趣。这些技术将提高知识,因为它们适用于更大的问题,从而扩展了我们解决医疗保健,环境指标,工程和社会科学方面的先进统计推断问题的能力。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ahmed, Syed其他文献
3D printed supercapacitor using porous carbon derived from packaging waste
- DOI:
10.1016/j.addma.2020.101525 - 发表时间:
2020-12-01 - 期刊:
- 影响因子:11
- 作者:
Idrees, Mohanad;Ahmed, Syed;Rangari, Vijaya - 通讯作者:
Rangari, Vijaya
What Do Concurrency Developers Ask About? A Large-scale Study Using Stack Overflow
- DOI:
10.1145/3239235.3239524 - 发表时间:
2018-01-01 - 期刊:
- 影响因子:0
- 作者:
Ahmed, Syed;Bagherzadeh, Mehdi - 通讯作者:
Bagherzadeh, Mehdi
Comparison of the immunogenicity and safety of Euvichol-Plus with Shanchol in healthy Indian adults and children: an open-label, randomised, multicentre, non-inferiority, parallel-group, phase 3 trial.
- DOI:
10.1016/j.lansea.2023.100256 - 发表时间:
2023-12 - 期刊:
- 影响因子:0
- 作者:
Shah, Sanket;Nandy, Ranjan Kumar;Sethi, Shaily S.;Chavan, Bhakti;Pathak, Sarang;Dutta, Shanta;Rai, Sanjay;Singh, Chandramani;Chayal, Vinod;Patel, Chintan;Kumar, N. Ravi;Chavan, Abhishek T.;Chawla, Amit;Singh, Anit;Roy, Anupriya Khare;Singh, Nidhi;Baik, Yeong Ok;Lee, Youngjin;Park, Youngran;Jeong, Kyung Ho;Ahmed, Syed - 通讯作者:
Ahmed, Syed
COVID-19 management landscape: A need for an affordable platform to manufacture safe and efficacious biotherapeutics and prophylactics for the developing countries.
- DOI:
10.1016/j.vaccine.2022.05.065 - 发表时间:
2022-08-26 - 期刊:
- 影响因子:5.5
- 作者:
Pidiyar, Vyankatesh;Kumraj, Ganesh;Ahmed, Kafil;Ahmed, Syed;Shah, Sanket;Majumder, Piyali;Verma, Bhawna;Pathak, Sarang;Mukherjee, Sushmita - 通讯作者:
Mukherjee, Sushmita
Review: Trunnionosis leading to modular femoral head dissociation
- DOI:
10.1016/j.jor.2021.01.008 - 发表时间:
2021-02-02 - 期刊:
- 影响因子:1.5
- 作者:
Dutta, Agneish;Nutt, James;Ahmed, Syed - 通讯作者:
Ahmed, Syed
Ahmed, Syed的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ahmed, Syed', 18)}}的其他基金
Ensemble subspace, penalty, pretest, and shrinkage strategies for high dimensional data
高维数据的集成子空间、惩罚、预测试和收缩策略
- 批准号:
RGPIN-2017-05228 - 财政年份:2022
- 资助金额:
$ 0.87万 - 项目类别:
Discovery Grants Program - Individual
Ensemble subspace, penalty, pretest, and shrinkage strategies for high dimensional data
高维数据的集成子空间、惩罚、预测试和收缩策略
- 批准号:
RGPIN-2017-05228 - 财政年份:2019
- 资助金额:
$ 0.87万 - 项目类别:
Discovery Grants Program - Individual
Ensemble subspace, penalty, pretest, and shrinkage strategies for high dimensional data
高维数据的集成子空间、惩罚、预测试和收缩策略
- 批准号:
RGPIN-2017-05228 - 财政年份:2018
- 资助金额:
$ 0.87万 - 项目类别:
Discovery Grants Program - Individual
Ensemble subspace, penalty, pretest, and shrinkage strategies for high dimensional data
高维数据的集成子空间、惩罚、预测试和收缩策略
- 批准号:
RGPIN-2017-05228 - 财政年份:2017
- 资助金额:
$ 0.87万 - 项目类别:
Discovery Grants Program - Individual
Inference strategies with applications and boostrapping
具有应用程序和 boostrapping 的推理策略
- 批准号:
98832-2006 - 财政年份:2006
- 资助金额:
$ 0.87万 - 项目类别:
Discovery Grants Program - Individual
Inference strategies with applications and boostrapping
具有应用程序和 boostrapping 的推理策略
- 批准号:
98832-2002 - 财政年份:2005
- 资助金额:
$ 0.87万 - 项目类别:
Discovery Grants Program - Individual
Inference strategies with applications and boostrapping
具有应用程序和 boostrapping 的推理策略
- 批准号:
98832-2002 - 财政年份:2004
- 资助金额:
$ 0.87万 - 项目类别:
Discovery Grants Program - Individual
Inference strategies with applications and boostrapping
具有应用程序和 boostrapping 的推理策略
- 批准号:
98832-2002 - 财政年份:2003
- 资助金额:
$ 0.87万 - 项目类别:
Discovery Grants Program - Individual
Inference strategies with applications and boostrapping
具有应用程序和 boostrapping 的推理策略
- 批准号:
98832-2002 - 财政年份:2002
- 资助金额:
$ 0.87万 - 项目类别:
Discovery Grants Program - Individual
Inference strategies with applications and boostrapping
具有应用程序和 boostrapping 的推理策略
- 批准号:
98832-2002 - 财政年份:2002
- 资助金额:
$ 0.87万 - 项目类别:
Discovery Grants Program - Individual
相似国自然基金
肝癌肝移植免疫稳态维持的精准策略及选择性区域免疫耐受新靶点研究(联合申请 A)
- 批准号:82241225
- 批准年份:2022
- 资助金额:200.00 万元
- 项目类别:专项项目
EGFR突变型肺癌免疫检查点抑制剂的耐药机制及干预策略(联合申请A)
- 批准号:82241227
- 批准年份:2022
- 资助金额:200.00 万元
- 项目类别:专项项目
胸主动脉夹层发生发展机制和预警干预策略研究(联合申请A)
- 批准号:82241201
- 批准年份:2022
- 资助金额:200.00 万元
- 项目类别:专项项目
肾移植后免疫稳态重建以及维持策略(联合申请B)
- 批准号:82241214
- 批准年份:2022
- 资助金额:200.00 万元
- 项目类别:专项项目
循环肿瘤细胞介导的肺癌定向性脑转移机制及应对策略研究(联合申请A)
- 批准号:82241229
- 批准年份:2022
- 资助金额:200.00 万元
- 项目类别:专项项目
相似海外基金
Model selection, inference strategies and their applications
模型选择、推理策略及其应用
- 批准号:
98832-2011 - 财政年份:2016
- 资助金额:
$ 0.87万 - 项目类别:
Discovery Grants Program - Individual
Model selection, inference strategies and their applications
模型选择、推理策略及其应用
- 批准号:
98832-2011 - 财政年份:2014
- 资助金额:
$ 0.87万 - 项目类别:
Discovery Grants Program - Individual
Model selection, inference strategies and their applications
模型选择、推理策略及其应用
- 批准号:
98832-2011 - 财政年份:2013
- 资助金额:
$ 0.87万 - 项目类别:
Discovery Grants Program - Individual
Model selection, inference strategies and their applications
模型选择、推理策略及其应用
- 批准号:
98832-2011 - 财政年份:2012
- 资助金额:
$ 0.87万 - 项目类别:
Discovery Grants Program - Individual
Model selection, inference strategies and their applications
模型选择、推理策略及其应用
- 批准号:
98832-2011 - 财政年份:2011
- 资助金额:
$ 0.87万 - 项目类别:
Discovery Grants Program - Individual