Sequential, nonsequential, and shrinkage inference techniques and applications
顺序、非顺序和收缩推理技术及应用
基本信息
- 批准号:293251-2007
- 负责人:
- 金额:$ 1.02万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2007
- 资助国家:加拿大
- 起止时间:2007-01-01 至 2008-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This research proposes several improved methologies to deal with various statistical analysis problems of relevance in areas such as clinical trials, count data arising in toxicology, genetic linkage analysis of complex diseases, industrial quality control, and microarray data analysis.Specifically, I am proposing sequential methods for testing statistical hypotheses when the parameter space of interest is constrained. In general, if we know that parameters are restricted by some constraints then it is reasonable to expect that testing procedures incorporating the restrictions should be more powerful than those ignoring them. An example of a model in which this happens is the one arising when testing whether or not a given gene is responsible for certain disease in the presence of other genes at different loci that may also be responsible for the disease. In such cases, the number of recombinants (a measure of the degree of linkage) has a binomial mixture. Collecting data for such genetic studies requires many years and large financial support. The methods I am proposing will include hypotheses testing of this type and are expected to reduce the total sample needed for making decision. Moreover, the shrinkage sequential estimation methods proposed in this project are expected to reduce the sample size needed in DNA microarray data analysis while borrowing information across the genes. This is important, as the cost of a microarray is quite high.Other methods in my proposal are empirical Bayes methods for the analysis of count data. These methods are also expected to be more efficient in estimating the average count and at the same time incorporating prior knowledge that is available in the form of auxiliary information (covariates or prognostic factors).
本研究提出了几种改进的方法来处理各种相关领域的统计分析问题,如临床试验,在毒理学中产生的计数数据,复杂疾病的遗传连锁分析,工业质量控制,和微阵列数据analysis.Specifically,我提出了序贯的方法来检验统计假设时,参数空间的利益受到限制。总的来说,如果我们知道参数受到某些约束的限制,那么我们就有理由期望,包含这些约束的测试程序应该比忽略这些约束的测试程序更强大。发生这种情况的模型的一个例子是,当测试给定基因是否对某些疾病负责时,在不同位点上的其他基因也可能对某些疾病负责时,疾病在这种情况下,重组体的数量(连锁程度的量度) 都是二项混合为这种遗传研究收集数据需要多年时间和大量的财政支持。我建议的方法将包括这种类型的假设检验,并有望减少决策所需的总样本。此外,收缩序贯估计方法在这个项目中提出的,预计将减少DNA微阵列数据分析所需的样本量,同时借用跨基因的信息。这一点很重要,因为微阵列的成本相当高。我建议的其他方法是用于计数数据分析的经验贝叶斯方法。预计这些方法在估计平均计数方面也更有效,同时结合了以辅助信息(协变量或预后因素)形式提供的先验知识。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Hussein, Abdulkadir其他文献
Retrospective change detection for binary time series models
- DOI:
10.1016/j.jspi.2013.08.017 - 发表时间:
2014-02-01 - 期刊:
- 影响因子:0.9
- 作者:
Fokianos, Konstantinos;Gombay, Edit;Hussein, Abdulkadir - 通讯作者:
Hussein, Abdulkadir
Comparison of an Electronic and Paper-based Montreal Cognitive Assessment Tool
- DOI:
10.1097/wad.0000000000000069 - 发表时间:
2015-10-01 - 期刊:
- 影响因子:2.1
- 作者:
Snowdon, Anne;Hussein, Abdulkadir;Hachinski, Vladimir - 通讯作者:
Hachinski, Vladimir
Hussein, Abdulkadir的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Hussein, Abdulkadir', 18)}}的其他基金
Statistical methods for time series of counts with long-range dependence arising from health care settings
卫生保健机构产生的具有长期依赖性的计数时间序列的统计方法
- 批准号:
RGPIN-2017-04992 - 财政年份:2019
- 资助金额:
$ 1.02万 - 项目类别:
Discovery Grants Program - Individual
"Group sequential procedures based on Ranked Set Sampling, sequential change-point and shrinkage estimation in correlated data"
“基于相关数据中的排序集采样、顺序变化点和收缩估计的分组顺序过程”
- 批准号:
293251-2012 - 财政年份:2016
- 资助金额:
$ 1.02万 - 项目类别:
Discovery Grants Program - Individual
"Group sequential procedures based on Ranked Set Sampling, sequential change-point and shrinkage estimation in correlated data"
“基于相关数据中的排序集采样、顺序变化点和收缩估计的分组顺序过程”
- 批准号:
293251-2012 - 财政年份:2015
- 资助金额:
$ 1.02万 - 项目类别:
Discovery Grants Program - Individual
"Group sequential procedures based on Ranked Set Sampling, sequential change-point and shrinkage estimation in correlated data"
“基于相关数据中的排序集采样、顺序变化点和收缩估计的分组顺序过程”
- 批准号:
293251-2012 - 财政年份:2014
- 资助金额:
$ 1.02万 - 项目类别:
Discovery Grants Program - Individual
"Group sequential procedures based on Ranked Set Sampling, sequential change-point and shrinkage estimation in correlated data"
“基于相关数据中的排序集采样、顺序变化点和收缩估计的分组顺序过程”
- 批准号:
293251-2012 - 财政年份:2013
- 资助金额:
$ 1.02万 - 项目类别:
Discovery Grants Program - Individual
"Group sequential procedures based on Ranked Set Sampling, sequential change-point and shrinkage estimation in correlated data"
“基于相关数据中的排序集采样、顺序变化点和收缩估计的分组顺序过程”
- 批准号:
293251-2012 - 财政年份:2012
- 资助金额:
$ 1.02万 - 项目类别:
Discovery Grants Program - Individual
Sequential, nonsequential, and shrinkage inference techniques and applications
顺序、非顺序和收缩推理技术及应用
- 批准号:
293251-2007 - 财政年份:2011
- 资助金额:
$ 1.02万 - 项目类别:
Discovery Grants Program - Individual
Sequential, nonsequential, and shrinkage inference techniques and applications
顺序、非顺序和收缩推理技术及应用
- 批准号:
293251-2007 - 财政年份:2010
- 资助金额:
$ 1.02万 - 项目类别:
Discovery Grants Program - Individual
Sequential, nonsequential, and shrinkage inference techniques and applications
顺序、非顺序和收缩推理技术及应用
- 批准号:
293251-2007 - 财政年份:2009
- 资助金额:
$ 1.02万 - 项目类别:
Discovery Grants Program - Individual
Sequential, nonsequential, and shrinkage inference techniques and applications
顺序、非顺序和收缩推理技术及应用
- 批准号:
293251-2007 - 财政年份:2008
- 资助金额:
$ 1.02万 - 项目类别:
Discovery Grants Program - Individual
相似海外基金
Sequential, nonsequential, and shrinkage inference techniques and applications
顺序、非顺序和收缩推理技术及应用
- 批准号:
293251-2007 - 财政年份:2011
- 资助金额:
$ 1.02万 - 项目类别:
Discovery Grants Program - Individual
Sequential, nonsequential, and shrinkage inference techniques and applications
顺序、非顺序和收缩推理技术及应用
- 批准号:
293251-2007 - 财政年份:2010
- 资助金额:
$ 1.02万 - 项目类别:
Discovery Grants Program - Individual
Sequential, nonsequential, and shrinkage inference techniques and applications
顺序、非顺序和收缩推理技术及应用
- 批准号:
293251-2007 - 财政年份:2009
- 资助金额:
$ 1.02万 - 项目类别:
Discovery Grants Program - Individual
Sequential, nonsequential, and shrinkage inference techniques and applications
顺序、非顺序和收缩推理技术及应用
- 批准号:
293251-2007 - 财政年份:2008
- 资助金额:
$ 1.02万 - 项目类别:
Discovery Grants Program - Individual