Amenable locally compact groups and A_p(G)
服从局部紧群和 A_p(G)
基本信息
- 批准号:122014-2008
- 负责人:
- 金额:$ 1.02万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2010
- 资助国家:加拿大
- 起止时间:2010-01-01 至 2011-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
My research interest is in harmonic analysis and Banach algebras using powerful tools from operator algebras and group representations. The main objects of my study are the locally compact topological groups G, the Fourier and Fourier-Stieltjes algebras A(G) and B(G), the Figa-Talamanca-Herz algebra A_p(G) and the more general Banach algebra W_p(G), as well as some other Banach algebras associated to G. These mathematical objects are both algebraic and topological in nature, and are widely studied by many mathematicians such as Antoine Derighetti, Brian Forrest, Ed. Granirer, Anthony Lau, Alan Paterson, Zhong-Jin Ruan and Joseph Rosenblatt. These objects are not only important in the area of theoretical mathematics, but also very useful to physicists, statisticians and social scientists. Among some of the problems that I plan to work on are the following:
我的研究兴趣是调和分析和巴拿赫代数,利用算子代数和群表示的强大工具。我研究的主要对象是局部紧拓扑群G,傅里叶代数A(G)和傅里叶- stieltjes代数A(G)和B(G), Figa-Talamanca-Herz代数A_p(G)和更一般的巴拿赫代数W_p(G),以及与G相关的其他一些巴拿赫代数。这些数学对象在本质上既是代数的又是拓扑的,并且被许多数学家广泛研究,如Antoine Derighetti, Brian Forrest, Ed. Granirer, Anthony Lau, Alan Paterson,阮仲金和约瑟夫·罗森布拉特。这些对象不仅在理论数学领域很重要,而且对物理学家、统计学家和社会科学家也非常有用。我计划解决的一些问题如下:
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Miao, Tianxuan其他文献
Miao, Tianxuan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Miao, Tianxuan', 18)}}的其他基金
Amenable locally compact groups and A_p(G)
服从局部紧群和 A_p(G)
- 批准号:
122014-2008 - 财政年份:2012
- 资助金额:
$ 1.02万 - 项目类别:
Discovery Grants Program - Individual
Amenable locally compact groups and A_p(G)
服从局部紧群和 A_p(G)
- 批准号:
122014-2008 - 财政年份:2011
- 资助金额:
$ 1.02万 - 项目类别:
Discovery Grants Program - Individual
Amenable locally compact groups and A_p(G)
服从局部紧群和 A_p(G)
- 批准号:
122014-2008 - 财政年份:2009
- 资助金额:
$ 1.02万 - 项目类别:
Discovery Grants Program - Individual
Amenable locally compact groups and A_p(G)
服从局部紧群和 A_p(G)
- 批准号:
122014-2008 - 财政年份:2008
- 资助金额:
$ 1.02万 - 项目类别:
Discovery Grants Program - Individual
Amenable locally compact groups and the fourier algebra
服从局部紧群和傅里叶代数
- 批准号:
122014-2003 - 财政年份:2007
- 资助金额:
$ 1.02万 - 项目类别:
Discovery Grants Program - Individual
Amenable locally compact groups and the fourier algebra
服从的局部紧群和傅里叶代数
- 批准号:
122014-2003 - 财政年份:2006
- 资助金额:
$ 1.02万 - 项目类别:
Discovery Grants Program - Individual
Amenable locally compact groups and the fourier algebra
服从局部紧群和傅里叶代数
- 批准号:
122014-2003 - 财政年份:2005
- 资助金额:
$ 1.02万 - 项目类别:
Discovery Grants Program - Individual
Amenable locally compact groups and the fourier algebra
服从局部紧群和傅里叶代数
- 批准号:
122014-2003 - 财政年份:2004
- 资助金额:
$ 1.02万 - 项目类别:
Discovery Grants Program - Individual
Amenable locally compact groups and the fourier algebra
服从局部紧群和傅里叶代数
- 批准号:
122014-2003 - 财政年份:2003
- 资助金额:
$ 1.02万 - 项目类别:
Discovery Grants Program - Individual
Amenability of locally compact groups and geometric properties of Ap (G)
局部紧群的顺应性和 Ap (G) 的几何性质
- 批准号:
122014-1999 - 财政年份:2002
- 资助金额:
$ 1.02万 - 项目类别:
Discovery Grants Program - Individual
相似海外基金
The algebraic structure of minimally almost periodic groups, extremely amenable groups and the Glasner-Pestov conjecture
最小几乎周期群、极其顺应群的代数结构和格拉斯纳-佩斯托夫猜想
- 批准号:
19J14198 - 财政年份:2019
- 资助金额:
$ 1.02万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Operator spaces, locally compact quantum groups, and amenable Banach algebras
算子空间、局部紧量子群和适用的巴纳赫代数
- 批准号:
RGPIN-2014-06155 - 财政年份:2018
- 资助金额:
$ 1.02万 - 项目类别:
Discovery Grants Program - Individual
Operator spaces, locally compact quantum groups, and amenable Banach algebras
算子空间、局部紧量子群和适用的巴纳赫代数
- 批准号:
RGPIN-2014-06155 - 财政年份:2017
- 资助金额:
$ 1.02万 - 项目类别:
Discovery Grants Program - Individual
Operator spaces, locally compact quantum groups, and amenable Banach algebras
算子空间、局部紧量子群和适用的巴纳赫代数
- 批准号:
RGPIN-2014-06155 - 财政年份:2016
- 资助金额:
$ 1.02万 - 项目类别:
Discovery Grants Program - Individual
Operator spaces, locally compact quantum groups, and amenable Banach algebras
算子空间、局部紧量子群和适用的巴纳赫代数
- 批准号:
RGPIN-2014-06155 - 财政年份:2015
- 资助金额:
$ 1.02万 - 项目类别:
Discovery Grants Program - Individual
Operator spaces, locally compact quantum groups, and amenable Banach algebras
算子空间、局部紧量子群和适用的巴纳赫代数
- 批准号:
RGPIN-2014-06155 - 财政年份:2014
- 资助金额:
$ 1.02万 - 项目类别:
Discovery Grants Program - Individual
Amenable locally compact groups and A_p(G)
服从局部紧群和 A_p(G)
- 批准号:
122014-2008 - 财政年份:2012
- 资助金额:
$ 1.02万 - 项目类别:
Discovery Grants Program - Individual
Amenable locally compact groups and A_p(G)
服从局部紧群和 A_p(G)
- 批准号:
122014-2008 - 财政年份:2011
- 资助金额:
$ 1.02万 - 项目类别:
Discovery Grants Program - Individual
Amenable locally compact groups and A_p(G)
服从局部紧群和 A_p(G)
- 批准号:
122014-2008 - 财政年份:2009
- 资助金额:
$ 1.02万 - 项目类别:
Discovery Grants Program - Individual
Amenable locally compact groups, Banach algebras and unitary representations
适合的局部紧群、Banach 代数和酉表示
- 批准号:
298444-2004 - 财政年份:2008
- 资助金额:
$ 1.02万 - 项目类别:
Discovery Grants Program - Individual














{{item.name}}会员




