The cuntz semigroup and the structure of c*-algebras: dynamics and classification

cuntz 半群和 c* 代数的结构:动力学和分类

基本信息

  • 批准号:
    311669-2010
  • 负责人:
  • 金额:
    $ 1.42万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2010
  • 资助国家:
    加拿大
  • 起止时间:
    2010-01-01 至 2011-12-31
  • 项目状态:
    已结题

项目摘要

Finitely generated projective modules over algebras of operators on Hilbert space have been studied for as long as the algebras themselves. Already in the 1930s Murray and von Neumann used the structure of isomorphism classes of these modules to give their type classification of factors. Later, these same classes were used to establish the beginnings of K-theory for operator algebras. This brings us to the starting point of this proposal: the phenomenon of K-theoretic rigidity for separable amenable C*-algebras. The conjecture, put forward by Elliott in the early 1990s, is that the these algebras should be determined up to isomorphism by their Banach algebra K-theory and tracial functionals. We know now that the conjecture does not hold at its most daring. Rordam found the first counterexample in 2003, and I discovered (independently) further counterexamples in the stably finite case. The last of these fingers an important shortcoming in the effort to classify separable amenable C*-algebras: there is a large gap between the amount of information carried by the finitely generated projective modules over a C*-algebra and that carried by its countably generated Hilbert modules (Banach modules over the given C*-algebra which are equipped with an inner product taking values in the same algebra). The finitely generated modules, for instance, say essentially nil about the algebra of continuous complex-valued functions on a compact contractible Hausdorff space X, while the Hilbert modules recover X completely.
希尔伯特空间上算子代数上的直接生成投射模的研究时间与代数本身一样长。 早在20世纪30年代默里和冯诺依曼使用的结构同构类的这些模块给他们的类型分类的因素。 后来,这些相同的类被用来建立算子代数的K-理论的开端。 这就把我们带到了这个提议的出发点:可分顺从C*-代数的K-理论刚性现象。 由Elliott在90年代初提出的猜想是,这些代数应该由它们的Banach代数K-理论和迹泛函决定到同构。 我们现在知道,这个猜想在最大胆的时候并不成立。 Rordam在2003年发现了第一个反例,我(独立地)发现了稳定有限情形下的更多反例。 最后这些手指的一个重要缺点是在分类可分顺从C*-代数的努力:有一个很大的差距,所携带的信息量之间的cumber-generated投射模在一个C*-代数,并进行其可数生成希尔伯特模(巴拿赫模在给定的C*-代数,配备了一个内积在同一个代数的值)。 例如,希尔伯特生成模对于紧致可收缩豪斯多夫空间X上的连续复值函数的代数本质上是零,而希尔伯特模则完全恢复了X。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Toms, Andrew其他文献

Automated separation and measurement of 226Ra and trace metals in freshwater, seawater and fracking water by online ion exchange chromatography coupled with ICP-MS
  • DOI:
    10.1016/j.microc.2021.106321
  • 发表时间:
    2021-05-08
  • 期刊:
  • 影响因子:
    4.8
  • 作者:
    Wang, Wei;Evans, R. Douglas;Toms, Andrew
  • 通讯作者:
    Toms, Andrew
POSTERIOR TIBIAL SLOPE: EFFECT ON, AND INTERACTION WITH, KNEE KINEMATICS
  • DOI:
    10.2106/jbjs.rvw.o.00057
  • 发表时间:
    2016-04-12
  • 期刊:
  • 影响因子:
    2.3
  • 作者:
    Ahmad, Riaz;Patel, Amit;Toms, Andrew
  • 通讯作者:
    Toms, Andrew
Revision total knee replacement finances: a detailed cost-analysis of operative practice at a regional tertiary referral centre.
  • DOI:
    10.1186/s12913-023-10316-x
  • 发表时间:
    2024-01-04
  • 期刊:
  • 影响因子:
    2.8
  • 作者:
    Alexiadis, Aris;Reynolds, Patrick;Al-Mouazzen, Louay;Toms, Andrew;Phillips, John;Waterson, Ben
  • 通讯作者:
    Waterson, Ben
Improved outcome in femoral revision arthroplasty with tapered fluted modular titanium stems
  • DOI:
    10.1097/01.blo.0000238875.86519.cf
  • 发表时间:
    2006-12-01
  • 期刊:
  • 影响因子:
    4.2
  • 作者:
    Garbuz, Donald S.;Toms, Andrew;Duncan, Clive P.
  • 通讯作者:
    Duncan, Clive P.
A technical innovation for improving identification of the trackers by the LED cameras in navigation-assisted total knee arthroplasty
  • DOI:
    10.1080/10929080701563412
  • 发表时间:
    2007-07-01
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Darmanis, Spyridon;Toms, Andrew;Eyres, Keith
  • 通讯作者:
    Eyres, Keith

Toms, Andrew的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Toms, Andrew', 18)}}的其他基金

The classification of C*-algebras: dimension growth, Z-absorption, and the range of invariants
C* 代数的分类:维数增长、Z 吸收和不变量范围
  • 批准号:
    311669-2005
  • 财政年份:
    2009
  • 资助金额:
    $ 1.42万
  • 项目类别:
    Discovery Grants Program - Individual
The classification of C*-algebras: dimension growth, Z-absorption, and the range of invariants
C* 代数的分类:维数增长、Z 吸收和不变量范围
  • 批准号:
    311669-2005
  • 财政年份:
    2008
  • 资助金额:
    $ 1.42万
  • 项目类别:
    Discovery Grants Program - Individual
The classification of C*-algebras: dimension growth, Z-absorption, and the range of invariants
C* 代数的分类:维数增长、Z 吸收和不变量范围
  • 批准号:
    311669-2005
  • 财政年份:
    2006
  • 资助金额:
    $ 1.42万
  • 项目类别:
    Discovery Grants Program - Individual
The classification of C*-algebras: dimension growth, Z-absorption, and the range of invariants
C* 代数的分类:维数增长、Z 吸收和不变量范围
  • 批准号:
    311669-2005
  • 财政年份:
    2006
  • 资助金额:
    $ 1.42万
  • 项目类别:
    Discovery Grants Program - Individual
The classification of C*-algebras: dimension growth, Z-absorption, and the range of invariants
C* 代数的分类:维数增长、Z 吸收和不变量范围
  • 批准号:
    311669-2005
  • 财政年份:
    2005
  • 资助金额:
    $ 1.42万
  • 项目类别:
    Discovery Grants Program - Individual
Strongly perforated K_O-groups of simple C*-Algebras
简单 C* 代数的强穿孔 K_O 群
  • 批准号:
    253067-2002
  • 财政年份:
    2003
  • 资助金额:
    $ 1.42万
  • 项目类别:
    Postdoctoral Fellowships
Strongly perforated K_O-groups of simple C*-Algebras
简单 C* 代数的强穿孔 K_O 群
  • 批准号:
    253067-2002
  • 财政年份:
    2002
  • 资助金额:
    $ 1.42万
  • 项目类别:
    Postdoctoral Fellowships
PGSB/ESB
PGSB/ESB
  • 批准号:
    200453-1999
  • 财政年份:
    2000
  • 资助金额:
    $ 1.42万
  • 项目类别:
    Postgraduate Scholarships
PGSA/ESA
PGSA/欧空局
  • 批准号:
    200453-1997
  • 财政年份:
    1999
  • 资助金额:
    $ 1.42万
  • 项目类别:
    Postgraduate Scholarships
PGSB/ESB
PGSB/ESB
  • 批准号:
    200453-1999
  • 财政年份:
    1999
  • 资助金额:
    $ 1.42万
  • 项目类别:
    Postgraduate Scholarships

相似海外基金

Weighted semigroup approach for Fokker-Planck-Kolmogorov equations
Fokker-Planck-Kolmogorov 方程的加权半群方法
  • 批准号:
    517982119
  • 财政年份:
    2023
  • 资助金额:
    $ 1.42万
  • 项目类别:
    WBP Fellowship
Application of automata and transducers to computational semigroup theory
自动机和传感器在计算半群论中的应用
  • 批准号:
    2590267
  • 财政年份:
    2021
  • 资助金额:
    $ 1.42万
  • 项目类别:
    Studentship
Zero-dimensional semigroup compactifications of locally compact groups
局部紧群的零维半群紧化
  • 批准号:
    539121-2019
  • 财政年份:
    2019
  • 资助金额:
    $ 1.42万
  • 项目类别:
    University Undergraduate Student Research Awards
Schr\"odinger forms and stochastic analysis for weighted Markov processes
加权马尔可夫过程的薛定格形式和随机分析
  • 批准号:
    17K05304
  • 财政年份:
    2017
  • 资助金额:
    $ 1.42万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Higher Rank Graph Algebras, Multivariate Operator Theory, Free semigroup Algebras, and Functional Equations
高阶图代数、多元算子理论、自由半群代数和函数方程
  • 批准号:
    358793-2013
  • 财政年份:
    2017
  • 资助金额:
    $ 1.42万
  • 项目类别:
    Discovery Grants Program - Individual
Combinatorial theory of semigroup actions
半群作用的组合理论
  • 批准号:
    1795681
  • 财政年份:
    2016
  • 资助金额:
    $ 1.42万
  • 项目类别:
    Studentship
Thermodynamic formalism for conformal semigroup actions
共形半群作用的热力学形式主义
  • 批准号:
    15H06416
  • 财政年份:
    2015
  • 资助金额:
    $ 1.42万
  • 项目类别:
    Grant-in-Aid for Research Activity Start-up
Higher Rank Graph Algebras, Multivariate Operator Theory, Free semigroup Algebras, and Functional Equations
高阶图代数、多元算子理论、自由半群代数和函数方程
  • 批准号:
    358793-2013
  • 财政年份:
    2015
  • 资助金额:
    $ 1.42万
  • 项目类别:
    Discovery Grants Program - Individual
Higher Rank Graph Algebras, Multivariate Operator Theory, Free semigroup Algebras, and Functional Equations
高阶图代数、多元算子理论、自由半群代数和函数方程
  • 批准号:
    358793-2013
  • 财政年份:
    2014
  • 资助金额:
    $ 1.42万
  • 项目类别:
    Discovery Grants Program - Individual
Higher Rank Graph Algebras, Multivariate Operator Theory, Free semigroup Algebras, and Functional Equations
高阶图代数、多元算子理论、自由半群代数和函数方程
  • 批准号:
    358793-2013
  • 财政年份:
    2013
  • 资助金额:
    $ 1.42万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了