High-speed centrifugal blower for experimental aeroacoustics
用于实验气动声学的高速离心鼓风机
基本信息
- 批准号:407546-2011
- 负责人:
- 金额:$ 1.1万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Research Tools and Instruments - Category 1 (<$150,000)
- 财政年份:2010
- 资助国家:加拿大
- 起止时间:2010-01-01 至 2011-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The vortex-shedding phenomenon has been a subject of research since it was observed by Leonardo da Vinci. Vortex shedding occurs due to the boundary layer separation around bluff bodies in cross-flow. The boundary layer separates into two shear layers that trail and roll-up in the near field forming a periodic vortex street. In the case of a duct containing a bluff body such as a circular cylinder, when the vortex shedding frequency coincides with one of the acoustic natural frequencies of the duct, a feedback cycle may occur where the vortex shedding acts as a sound source and excites an acoustic standing wave which, in turn, enhances the shedding process and thereby creates a strong acoustic resonance. This process is known as flow-excited acoustic resonance. In many engineering applications where ducts containing clusters of bluff bodies are encountered, such as tube bundles of heat exchangers and boilers, cascades of compressor blades and guide/turning vanes in ducts and radial diffusers, unfortunate operating conditions could lead to a coincidence between the vortex shedding frequency and one of the acoustic natural frequencies of the duct. This often leads to flow-excited acoustic resonance and the generation of acute noise problems and/or excessive vibrations. Since this phenomenon is not yet fully understood, it can be dangerously unpredictable and may cause catastrophic failures in many applications such as power generation and transport. The main objective of the applicant's research in this area is to understand the feedback cycle of the flow-excited acoustic resonance. This requires the generation of a self-excited acoustic resonance in flow configurations similar to those mentioned above. However, the self-excited acoustic resonance will not materialize unless the flow velocity is sufficiently high to overcome the losses due to acoustic damping.This can only be achieved using the requested centrifugal blower system, which is capable of producing air flow with a velocity as high as 220 m/s in a cross-section area of 10 inch (25.4 cm) by 10 inch (25.4 cm).
自从列奥纳多达芬奇观察到旋涡脱落现象以来,它一直是研究的主题。在横流中,海崖体周围的边界层分离会导致旋涡脱落。边界层分离成两个剪切层,它们在近场中拖曳并卷起,形成周期性的涡街。在包含诸如圆柱体的非海崖体的管道的情况下,当涡旋脱落频率与管道的声学固有频率之一一致时,可能发生反馈循环,其中涡旋脱落充当声源并激发声学驻波,声学驻波又增强脱落过程,从而产生强烈的声学共振。这个过程被称为流动激励声共振。在许多工程应用中,遇到含有海崖体簇的管道,例如热交换器和锅炉的管束、压缩机叶片的叶栅以及管道和径向扩散器中的导向/转向叶片,不利的操作条件可能导致涡流脱落频率与管道的声学固有频率之一重合。这通常导致流激声共振和产生严重的噪声问题和/或过度振动。由于这一现象尚未完全了解,它可能是危险的不可预测的,并可能在许多应用中造成灾难性的故障,如发电和运输。申请人在该领域的研究的主要目标是理解流激声共振的反馈循环。这需要在类似于上述的流动配置中产生自激声共振。然而,除非流速足够高以克服由于声阻尼引起的损失,否则自激声共振将不会实现,这只能使用所要求的离心鼓风机系统来实现,该离心鼓风机系统能够在10英寸(25.4 cm)× 10英寸(25.4 cm)的横截面面积中产生具有高达220 m/s的速度的气流。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Mohany, Atef其他文献
An investigation of ultrasonic based hydrogen production
- DOI:
10.1016/j.energy.2020.118006 - 发表时间:
2020-08-15 - 期刊:
- 影响因子:9
- 作者:
Rashwan, Sherif S.;Dincer, Ibrahim;Mohany, Atef - 通讯作者:
Mohany, Atef
Investigation of acoustic and geometric effects on the sonoreactor performance
- DOI:
10.1016/j.ultsonch.2020.105174 - 发表时间:
2020-11-01 - 期刊:
- 影响因子:8.4
- 作者:
Rashwan, Sherif S.;Dincer, Ibrahim;Mohany, Atef - 通讯作者:
Mohany, Atef
A unique study on the effect of dissolved gases and bubble temperatures on the ultrasonic hydrogen (sonohydrogen) production
- DOI:
10.1016/j.ijhydene.2020.05.022 - 发表时间:
2020-08-21 - 期刊:
- 影响因子:7.2
- 作者:
Rashwan, Sherif S.;Dincer, Ibrahim;Mohany, Atef - 通讯作者:
Mohany, Atef
Mohany, Atef的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Mohany, Atef', 18)}}的其他基金
Flow-Sound Interaction Mechanisms with Application to Bluff Body Wakes and Separated Shear Flows
流声相互作用机制及其在钝体尾流和分离剪切流中的应用
- 批准号:
RGPIN-2022-04031 - 财政年份:2022
- 资助金额:
$ 1.1万 - 项目类别:
Discovery Grants Program - Individual
Investigation and implementation of pulse-electro thermal de-icing in commercial electric vehicles
商用电动汽车脉冲电热除冰技术的研究与实施
- 批准号:
560820-2020 - 财政年份:2021
- 资助金额:
$ 1.1万 - 项目类别:
Alliance Grants
Investigation of the Dynamic Characteristics of CANDU Fuel Bundle
CANDU燃料束动态特性研究
- 批准号:
543934-2019 - 财政年份:2021
- 资助金额:
$ 1.1万 - 项目类别:
Collaborative Research and Development Grants
Flow-Sound Interaction Mechanisms and Control Strategies
流声交互机制及控制策略
- 批准号:
RGPIN-2016-04776 - 财政年份:2021
- 资助金额:
$ 1.1万 - 项目类别:
Discovery Grants Program - Individual
Investigation of the Dynamic Characteristics of CANDU Fuel Bundle
CANDU燃料束动态特性研究
- 批准号:
543934-2019 - 财政年份:2020
- 资助金额:
$ 1.1万 - 项目类别:
Collaborative Research and Development Grants
Flow-Sound Interaction Mechanisms and Control Strategies
流声交互机制及控制策略
- 批准号:
RGPIN-2016-04776 - 财政年份:2020
- 资助金额:
$ 1.1万 - 项目类别:
Discovery Grants Program - Individual
Investigation and Mitigation of Over-Testing Behavior in an Industrial Seismic Qualification Table
工业抗震鉴定表中过度测试行为的调查和缓解
- 批准号:
543352-2019 - 财政年份:2019
- 资助金额:
$ 1.1万 - 项目类别:
Engage Grants Program
Investigation of the acoustic pressure pulsations in piping system and their effect on the dynamic response of CANDU fuel bundles
管道系统声压脉动及其对 CANDU 燃料棒束动态响应的影响研究
- 批准号:
488610-2015 - 财政年份:2019
- 资助金额:
$ 1.1万 - 项目类别:
Collaborative Research and Development Grants
Flow-Sound Interaction Mechanisms and Control Strategies
流声交互机制及控制策略
- 批准号:
RGPIN-2016-04776 - 财政年份:2019
- 资助金额:
$ 1.1万 - 项目类别:
Discovery Grants Program - Individual
Investigation of the Dynamic Characteristics of CANDU Fuel Bundle
CANDU燃料束动态特性研究
- 批准号:
543934-2019 - 财政年份:2019
- 资助金额:
$ 1.1万 - 项目类别:
Collaborative Research and Development Grants
相似海外基金
CAREER: Unified sample preparation and micro-scale centrifugal heating for the next generation of portable and inexpensive molecular diagnostic platform
职业:统一样品制备和微尺度离心加热,用于下一代便携式且廉价的分子诊断平台
- 批准号:
2239135 - 财政年份:2023
- 资助金额:
$ 1.1万 - 项目类别:
Continuing Grant
Computational modelling and assessment of supersonic flow in centrifugal compressors for aviation air-conditioning systems
航空空调系统离心压缩机超音速流动的计算建模和评估
- 批准号:
577279-2022 - 财政年份:2022
- 资助金额:
$ 1.1万 - 项目类别:
Alliance Grants
Developing a novel centrifugal-based microfluidic particle focusing device; a microhydrocyclone
开发新型离心式微流控粒子聚焦装置;
- 批准号:
RGPIN-2020-04402 - 财政年份:2022
- 资助金额:
$ 1.1万 - 项目类别:
Discovery Grants Program - Individual
Effect of the centrifugal force on laminar-turbulent transition on a rotating cone
离心力对旋转锥体上层流-湍流转变的影响
- 批准号:
22K20406 - 财政年份:2022
- 资助金额:
$ 1.1万 - 项目类别:
Grant-in-Aid for Research Activity Start-up
Centrifugal regulation of olfactory function by melanin-concentrating hormone
黑色素浓缩激素对嗅觉功能的离心调节
- 批准号:
10610404 - 财政年份:2021
- 资助金额:
$ 1.1万 - 项目类别:
Centrifugal regulation of olfactory function by melanin-concentrating hormone
黑色素浓缩激素对嗅觉功能的离心调节
- 批准号:
10180496 - 财政年份:2021
- 资助金额:
$ 1.1万 - 项目类别:
LEAPS-MPS: Exploring Centrifugal Jet Spinning of Ultra-High-Temperature Ceramic Nanofibers
LEAPS-MPS:探索超高温陶瓷纳米纤维的离心喷射纺丝
- 批准号:
2137923 - 财政年份:2021
- 资助金额:
$ 1.1万 - 项目类别:
Standard Grant
Centrifugal regulation of olfactory function by melanin-concentrating hormone
黑色素浓缩激素对嗅觉功能的离心调节
- 批准号:
10380680 - 财政年份:2021
- 资助金额:
$ 1.1万 - 项目类别:
Centrifugal regulation of olfactory function by melanin-concentrating hormone
黑色素浓缩激素对嗅觉功能的离心调节
- 批准号:
10458804 - 财政年份:2021
- 资助金额:
$ 1.1万 - 项目类别:
Aerodynamic Improvement of Centrifugal Compressors
离心式压缩机的空气动力学改进
- 批准号:
RGPIN-2016-06645 - 财政年份:2021
- 资助金额:
$ 1.1万 - 项目类别:
Discovery Grants Program - Individual