Correlation of photoelectric, dynamical, electron and optical properties of semiconductors, surfaces and nanosystems: from theory to experiment

半导体、表面和纳米系统的光电、动力学、电子和光学特性的相关性:从理论到实验

基本信息

项目摘要

The proposed research program is in the fields of solid state physics, materials science and renewable energy. In particular, it focuses on extensive computer simulations of microscopic electronic, dynamical and optical properties of semiconductors, metals and nanomaterials in a wide temperature range. The fundamental results obtained will be used for (i) optical non-invasive monitoring of materials in a wide temperature range and active chemical environments; (ii) determination of the macroscopic properties through "computer experiments" that will be compared to actual experiment and (iii) optimization of new materials and systems by combining the above micro- and macro-properties. The materials include wide-gap semiconductors used for bright displays, crystalline, amorphous, poly-crystalline and nano-crystalline silicon for thin film solar cells, and new materials such as carbon nanotubes, for the next generation of photovoltaics. Diamond will also be modeled, not only due to its "quantum crystal" behaviour, but also because polycrystalline diamond has already found extensive application in modern technology and industry. It is predicted that nano-diamonds will revolutionize side effect-free drug delivery in medicine, and optical techniques still remains the main tool to experimentally characterize such promising materials. It is important to stress that the verification of theoretical results will be done through close collaboration with a few renowned experimental groups working in the areas of implementation of the optical techniques and growth of layered or nano systems for both microelectronic and photovoltaic applications. The research will be based on intensive use of High Performance Computing SHARCNET (Shared Hierarchical Research Computing Network) facilities. The program will deliver training and learning combined with advanced research in solid state physics, computing science, and renewable energy and will actively involve undergraduate and graduate students and postdoctoral fellows in investigations, preparation of research reports, conference presentations and publishing of research papers. The HQP will be exposed to both national and international research communities through joint collaboration.
拟议的研究计划是在固态物理,材料科学和可再生能源领域。特别是,它侧重于在宽温度范围内对半导体,金属和纳米材料的微观电子,动力学和光学特性进行广泛的计算机模拟。所获得的基本结果将用于(i)在宽温度范围和活性化学环境中对材料进行光学非侵入性监测;(ii)通过“计算机实验”确定宏观特性,并与实际实验进行比较;(iii)通过结合上述微观和宏观特性优化新材料和系统。这些材料包括用于明亮显示器的宽禁带半导体,用于薄膜太阳能电池的晶体、非晶、多晶和纳米晶体硅,以及用于下一代光电子器件的碳纳米管等新材料。金刚石也将被建模,不仅是因为它的“量子晶体”行为,而且还因为多晶金刚石已经在现代技术和工业中得到了广泛的应用。据预测,纳米金刚石将彻底改变药物在医学中的无副作用递送,光学技术仍然是实验表征这种有前途的材料的主要工具。重要的是要强调,理论结果的验证将通过与一些著名的实验组在微电子和光伏应用的光学技术和分层或纳米系统的生长的实施领域工作的密切合作来完成。该研究将基于高性能计算SHARCNET(共享分层研究计算网络)设施的密集使用。该计划将提供培训和学习,结合固态物理,计算科学和可再生能源的高级研究,并将积极参与本科生,研究生和博士后研究员的调查,研究报告的编写,会议演示和研究论文的出版。HQP将通过联合合作向国家和国际研究界开放。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Chkrebtii(Shkrebtii), Anatoli其他文献

Chkrebtii(Shkrebtii), Anatoli的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

一类具有近红外光电功能材料的合成及性能研究
  • 批准号:
    20472014
  • 批准年份:
    2004
  • 资助金额:
    23.0 万元
  • 项目类别:
    面上项目

相似海外基金

Development of innovative organic heterojunction using aligned liquid crystal and photoelectric conversion effect
利用定向液晶和光电转换效应开发创新有机异质结
  • 批准号:
    23K03935
  • 财政年份:
    2023
  • 资助金额:
    $ 0.95万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Development of infrared sensitive photoelectric conversion using quantum dots embedded at a heterointerfaces
使用嵌入异质界面的量子点开发红外敏感光电转换
  • 批准号:
    23H01448
  • 财政年份:
    2023
  • 资助金额:
    $ 0.95万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Continuous monitoring of venous flow and detection of abnormalities by overlay of skin resistance/reactance and photoelectric volumetric pulse wave
通过叠加皮肤电阻/电抗和光电容积脉搏波,连续监测静脉流量并检测异常情况
  • 批准号:
    23H03783
  • 财政年份:
    2023
  • 资助金额:
    $ 0.95万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Perovskite photoelectric memristors
钙钛矿光电忆阻器
  • 批准号:
    2898679
  • 财政年份:
    2021
  • 资助金额:
    $ 0.95万
  • 项目类别:
    Studentship
Polar layered perovskite materials for UV-NIR photoelectric conversion
用于紫外-近红外光电转换的极性层状钙钛矿材料
  • 批准号:
    21K19027
  • 财政年份:
    2021
  • 资助金额:
    $ 0.95万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
Room temperature operation of photoelectric spin conversion device with electron spin amplification function
具有电子自旋放大功能的光电自旋转换器件的室温操作
  • 批准号:
    21H01356
  • 财政年份:
    2021
  • 资助金额:
    $ 0.95万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Optogenetics-inspired photoelectric memories based on flexible nanogap electrodes
基于柔性纳米间隙电极的光遗传学启发光电存储器
  • 批准号:
    MR/V024442/1
  • 财政年份:
    2021
  • 资助金额:
    $ 0.95万
  • 项目类别:
    Fellowship
Quantum-Assisted Photoelectric Effects in Perovskite Solar Cells
钙钛矿太阳能电池中的量子辅助光电效应
  • 批准号:
    20K15135
  • 财政年份:
    2020
  • 资助金额:
    $ 0.95万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
High work function polymeric electrodes for Ohmic contact and efficient photoelectric conversion
用于欧姆接触和高效光电转换的高功函数聚合物电极
  • 批准号:
    20K15358
  • 财政年份:
    2020
  • 资助金额:
    $ 0.95万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Fabrication of Photoelectric Mn Oxide for Enhancing the High Capacity and Elucidation of Ion Insertion and Desorption Mechanisms
用于增强高容量的光电氧化锰的制备及离子插入和解吸机制的阐明
  • 批准号:
    19K05007
  • 财政年份:
    2019
  • 资助金额:
    $ 0.95万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了