Novel Algorithms to expedite experimental protein structure determination

加快实验蛋白质结构测定的新算法

基本信息

  • 批准号:
    341661-2009
  • 负责人:
  • 金额:
    $ 1.75万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2011
  • 资助国家:
    加拿大
  • 起止时间:
    2011-01-01 至 2012-12-31
  • 项目状态:
    已结题

项目摘要

Despite the importance of macromolecular structure in unraveling the biochemical basis of life, experimental structure determination remains a long, difficult, and expensive endeavour. The interest in protein structures is motivated by the general mantra that protein function is dictated by protein structure. This suggests that knowledge of protein structure is helpful not only in analysis of wildtype (or natural) proteins but also for mutant proteins such as those implicated in disease processes. Consequently, knowledge of protein structure has emerged as a critical resource for drug discovery and development. In the future, macromolecular structure determination will be an automated turn-key operation, and should be fast, inexpensive, and high-yield. My proposed research focuses on developing accurate and efficient algorithms to expedite the process of experimental protein structure determination. The proposed research program integrates knowledge from structural biology with algorithms in machine learning, machine vision, and computational search. The long-term goals of my interdisciplinary research program are to develop and apply techniques from Computer Science and Engineering to problems in Structural Biology (the study of protein structure and function). The research highlighted in this proposal represents part of a family of projects in my lab including algorithm development for experimental structure determination, protein design, structure-based drug design, and chemical synthesis planning. In this proposal, we describe several novel computational approaches for automating current experimental bottlenecks in X-Ray Crystallography and Electron CryoMicroscopy. As useful algorithmic milestones are achieved, we will package our software and make it freely available to the research community.
尽管大分子结构在解开生命的生化基础方面很重要,但实验结构测定仍然是一项漫长、困难和昂贵的工作。对蛋白质结构的兴趣是由蛋白质结构决定蛋白质功能这一普遍信条所激发的。这表明,对蛋白质结构的了解不仅有助于分析野生型(或天然)蛋白质,而且还有助于分析突变蛋白质,如那些与疾病过程有关的蛋白质。因此,蛋白质结构的知识已经成为药物发现和开发的关键资源。在未来,大分子结构的测定将是一项自动化的交钥匙操作,应该是快速、廉价和高产率的。我提出的研究重点是开发准确和高效的算法来加快实验蛋白质结构确定的过程。拟议的研究计划将结构生物学的知识与机器学习、机器视觉和计算搜索中的算法相结合。我的跨学科研究计划的长期目标是开发和应用计算机科学和工程技术来解决结构生物学(研究蛋白质结构和功能)中的问题。这项提案中强调的研究是我实验室一系列项目的一部分,这些项目包括用于实验结构确定、蛋白质设计、基于结构的药物设计和化学合成规划的算法开发。在这项建议中,我们描述了几种新的计算方法,用于自动化当前X射线结晶学和电子冷冻显微镜中的实验瓶颈。随着有用的算法里程碑的实现,我们将打包我们的软件,并将其免费提供给研究社区。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Lilien, Ryan其他文献

Normalizing Molecular Docking Rankings using Virtually Generated Decoys
The protein-small-molecule database, a non-redundant structural resource for the analysis of protein-ligand binding
  • DOI:
    10.1093/bioinformatics/btp035
  • 发表时间:
    2009-03-01
  • 期刊:
  • 影响因子:
    5.8
  • 作者:
    Wallach, Izhar;Lilien, Ryan
  • 通讯作者:
    Lilien, Ryan
Development and Validation of a Virtual Examination Tool for Firearm Forensics
  • DOI:
    10.1111/1556-4029.13668
  • 发表时间:
    2018-07-01
  • 期刊:
  • 影响因子:
    1.6
  • 作者:
    Duez, Pierre;Weller, Todd;Lilien, Ryan
  • 通讯作者:
    Lilien, Ryan

Lilien, Ryan的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Lilien, Ryan', 18)}}的其他基金

Novel Algorithms to expedite experimental protein structure determination
加快实验蛋白质结构测定的新算法
  • 批准号:
    341661-2009
  • 财政年份:
    2013
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Discovery Grants Program - Individual
Novel Algorithms to expedite experimental protein structure determination
加快实验蛋白质结构测定的新算法
  • 批准号:
    341661-2009
  • 财政年份:
    2012
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Discovery Grants Program - Individual
Novel Algorithms to expedite experimental protein structure determination
加快实验蛋白质结构测定的新算法
  • 批准号:
    341661-2009
  • 财政年份:
    2010
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Discovery Grants Program - Individual
Novel Algorithms to expedite experimental protein structure determination
加快实验蛋白质结构测定的新算法
  • 批准号:
    341661-2009
  • 财政年份:
    2009
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Discovery Grants Program - Individual
High performance computing for computational Biology
计算生物学的高性能计算
  • 批准号:
    375062-2009
  • 财政年份:
    2008
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Research Tools and Instruments - Category 1 (<$150,000)

相似海外基金

DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
  • 批准号:
    EP/Y029089/1
  • 财政年份:
    2024
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Research Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
  • 批准号:
    2337776
  • 财政年份:
    2024
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
  • 批准号:
    2338816
  • 财政年份:
    2024
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
  • 批准号:
    2338846
  • 财政年份:
    2024
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
  • 批准号:
    2348261
  • 财政年份:
    2024
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
  • 批准号:
    2348346
  • 财政年份:
    2024
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
  • 批准号:
    2348457
  • 财政年份:
    2024
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
  • 批准号:
    2404989
  • 财政年份:
    2024
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
  • 批准号:
    2339310
  • 财政年份:
    2024
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
  • 批准号:
    2339669
  • 财政年份:
    2024
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了