Streaming architectures for computation in medical radiation physics
用于医学辐射物理计算的流架构
基本信息
- 批准号:355493-2008
- 负责人:
- 金额:$ 1.56万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2011
- 资助国家:加拿大
- 起止时间:2011-01-01 至 2012-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Radiation therapy historically has evolved in close symbiosis with the development of faster and more powerful computers; advanced delivery techniques such as intensity-modulated radiation therapy (IMRT) would not be possible without today's microprocessors. The quest for better radiation delivery techniques continues to this day, and commands increasingly more powerful machines to handle the calculations required by complex treatment planning algorithms. In order to keep up with the processing requirements of modern algorithms, treatment planning systems (TPS) must sometimes resort to clusters of computers to provide clinical output in reasonable time. This architecture, although efficient, requires substantial investments in time and expertise, and can hinder the deployment of better TPS for economical and logistical reasons. It therefore appears that an economical and powerful, yet standalone calculation platform is highly desirable in radiation therapy, and in medical physics in general. We propose here to develop such a platform, using innovative hardware material dedicated to massively parallel calculations such as Graphics Processing Units (GPUs). GPUs and similar stream processors such as the Cell Broadband Engine (CBE) have already been used successfully for general-purpose calculations in many scientific fields, achieving speed improvement factors of up to two orders of magnitude over traditional implementations on Central Processing Units (CPUs). We propose to implement medical physics algorithms on stream processors such as GPUs in order to significantly accelerate tasks such as image processing, optimization and dose calculations. This, in turn, will allow the integration of more complex, more accurate and more personalized algorithms in treatment planning systems. The development of such algorithms on stream processors will benefit not only the field of medical radiation physics, but any discipline where high-performance computing is desirable.
放射治疗在历史上与更快、更强大的计算机的发展密切共生;如果没有今天的微处理器,像调强放射治疗(IMRT)这样的先进传输技术是不可能实现的。对更好的放射输送技术的追求一直持续到今天,并且需要越来越强大的机器来处理复杂的治疗计划算法所需的计算。为了跟上现代算法的处理要求,治疗计划系统(TPS)有时必须借助计算机集群在合理的时间内提供临床输出。这种架构虽然有效,但需要在时间和专业知识方面进行大量投资,并且由于经济和后勤原因,可能会阻碍更好的TPS的部署。因此,在放射治疗和一般医学物理学中,一个经济而强大的独立计算平台似乎是非常可取的。我们在此建议开发这样一个平台,使用专门用于大规模并行计算的创新硬件材料,如图形处理单元(gpu)。gpu和类似的流处理器,如Cell宽带引擎(CBE)已经成功地用于许多科学领域的通用计算,与传统的中央处理单元(cpu)实现相比,速度提高了两个数量级。我们建议在流处理器(如gpu)上实现医学物理算法,以显着加快图像处理,优化和剂量计算等任务。反过来,这将允许在治疗计划系统中集成更复杂、更准确和更个性化的算法。在流处理器上开发这种算法不仅有利于医疗辐射物理领域,而且有利于任何需要高性能计算的学科。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Després, Philippe其他文献
Després, Philippe的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Després, Philippe', 18)}}的其他基金
High-Performance Computing in Medical Physics
医学物理中的高性能计算
- 批准号:
RGPIN-2018-04588 - 财政年份:2022
- 资助金额:
$ 1.56万 - 项目类别:
Discovery Grants Program - Individual
High-Performance Computing in Medical Physics
医学物理中的高性能计算
- 批准号:
RGPIN-2018-04588 - 财政年份:2021
- 资助金额:
$ 1.56万 - 项目类别:
Discovery Grants Program - Individual
NSERC CREATE in Responsible Health and Healthcare Data Science
NSERC CREATE 负责健康和医疗保健数据科学
- 批准号:
528124-2019 - 财政年份:2021
- 资助金额:
$ 1.56万 - 项目类别:
Collaborative Research and Training Experience
NSERC CREATE in Responsible Health and Healthcare Data Science
NSERC CREATE 负责健康和医疗保健数据科学
- 批准号:
528124-2019 - 财政年份:2020
- 资助金额:
$ 1.56万 - 项目类别:
Collaborative Research and Training Experience
High-Performance Computing in Medical Physics
医学物理中的高性能计算
- 批准号:
RGPIN-2018-04588 - 财政年份:2020
- 资助金额:
$ 1.56万 - 项目类别:
Discovery Grants Program - Individual
Prédire l'évolution de l'hépatite C par la fédrération de données et l'intelligence artificielle enjeux éthiques, juridistique, sociaux et de vie privée
法律、社会和私人生活中的情报和情报技术联盟的和平预演
- 批准号:
538805-2019 - 财政年份:2020
- 资助金额:
$ 1.56万 - 项目类别:
Collaborative Health Research Projects
Prédire l'évolution de l'hépatite C par la fédrération de données et l'intelligence artificielle enjeux éthiques, juridistique, sociaux et de vie privée
法律、社会和私人生活中的情报和情报技术联盟的和平预演
- 批准号:
538805-2019 - 财政年份:2019
- 资助金额:
$ 1.56万 - 项目类别:
Collaborative Health Research Projects
High-Performance Computing in Medical Physics
医学物理中的高性能计算
- 批准号:
RGPIN-2018-04588 - 财政年份:2019
- 资助金额:
$ 1.56万 - 项目类别:
Discovery Grants Program - Individual
High-Performance Computing in Medical Physics
医学物理中的高性能计算
- 批准号:
RGPIN-2018-04588 - 财政年份:2018
- 资助金额:
$ 1.56万 - 项目类别:
Discovery Grants Program - Individual
High-performance computing with graphics hardware for medical physics applications
用于医学物理应用的具有图形硬件的高性能计算
- 批准号:
355493-2013 - 财政年份:2017
- 资助金额:
$ 1.56万 - 项目类别:
Discovery Grants Program - Individual
相似海外基金
Investigating bio-inspired architectures for efficient computation
研究仿生架构以实现高效计算
- 批准号:
2894696 - 财政年份:2022
- 资助金额:
$ 1.56万 - 项目类别:
Studentship
FET: Small: Heterogeneous Learning Architectures and Training Algorithms for Hardware Accelerated Deep Spiking Neural Computation
FET:小型:硬件加速深度尖峰神经计算的异构学习架构和训练算法
- 批准号:
1911067 - 财政年份:2019
- 资助金额:
$ 1.56万 - 项目类别:
Standard Grant
FET: Small: Heterogeneous Learning Architectures and Training Algorithms for Hardware Accelerated Deep Spiking Neural Computation
FET:小型:硬件加速深度尖峰神经计算的异构学习架构和训练算法
- 批准号:
1948201 - 财政年份:2019
- 资助金额:
$ 1.56万 - 项目类别:
Standard Grant
EAGER:CCF: Transient Architectures for Energy Efficient Computation
EAGER:CCF:节能计算的瞬态架构
- 批准号:
1417323 - 财政年份:2014
- 资助金额:
$ 1.56万 - 项目类别:
Standard Grant
Streaming architectures for computation in medical radiation physics
用于医学辐射物理计算的流架构
- 批准号:
355493-2008 - 财政年份:2012
- 资助金额:
$ 1.56万 - 项目类别:
Discovery Grants Program - Individual
Theoretical models for parallel computation in CMP and GPU architectures: algorithm analysis & design, cache efficiency and performance prediction
CMP 和 GPU 架构中并行计算的理论模型:算法分析
- 批准号:
411866-2010 - 财政年份:2010
- 资助金额:
$ 1.56万 - 项目类别:
Engage Grants Program
Streaming architectures for computation in medical radiation physics
用于医学辐射物理计算的流架构
- 批准号:
355493-2008 - 财政年份:2010
- 资助金额:
$ 1.56万 - 项目类别:
Discovery Grants Program - Individual
Streaming architectures for computation in medical radiation physics
用于医学辐射物理计算的流架构
- 批准号:
355493-2008 - 财政年份:2010
- 资助金额:
$ 1.56万 - 项目类别:
Discovery Grants Program - Individual
Streaming architectures for computation in medical radiation physics
用于医学辐射物理计算的流架构
- 批准号:
355493-2008 - 财政年份:2009
- 资助金额:
$ 1.56万 - 项目类别:
Discovery Grants Program - Individual
SHF: Small: Collaborative Research: Imperfection-Resilient Scalable Digital Signal Processing Algorithms and Architectures Using Significance Driven Computation
SHF:小型:协作研究:使用显着性驱动计算的不完美弹性可扩展数字信号处理算法和架构
- 批准号:
0916926 - 财政年份:2009
- 资助金额:
$ 1.56万 - 项目类别:
Standard Grant