Extensions of flexible survival models to marginal structural and Markov multi-state modeling
灵活生存模型扩展到边缘结构和马尔可夫多状态模型
基本信息
- 批准号:105521-2011
- 负责人:
- 金额:$ 2.04万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2013
- 资助国家:加拿大
- 起止时间:2013-01-01 至 2014-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Prognostic studies of the progression of various diseases are essential to identify patients at high risk of mortality and to assess the effectiveness of alternative treatments in preventing deaths and increasing survival. The clinical outcomes for patients with different clinical and socio-demographic characteristics and/or receiving different treatments are compared, to derive conclusions regarding the impact of these characteristics and treatments on disease progression and mortality. The validity of such conclusions depends crucially on the accuracy of statistical methods employed to analyze the data. Sophisticated statistical methods are necessary to account for the following challenges: (a) several patient characteristics and/or treatments may influence the outcome, (b) some characteristics are correlated with each other, (c) treatment often depends on patient's characteristics that may also affect the clinical outcome. The proposed research project relies on recent progress in both statistical theory and computational techniques to develop new, flexible statistical methods to address further challenges related to (d) the multitude of possible longitudinal pathways of disease evolution and of clinical outcomes (for example, deaths due to different causes), and changes over time (e) in some important clinical risk factors and the type and/or dose of the prescribed treatment. By allowing clinical researchers to draw correct conclusions even from such complex data, the proposed project will advance understanding of the progression of complex diseases. This may ultimately enhance the quality of clinical prognosis and the effectiveness of the treatments.
各种疾病进展的预后研究对于确定死亡风险高的患者以及评估替代治疗在预防死亡和提高生存率方面的有效性至关重要。比较具有不同临床和社会人口统计学特征和/或接受不同治疗的患者的临床结局,以得出关于这些特征和治疗对疾病进展和死亡率影响的结论。这些结论的有效性关键取决于用于分析数据的统计方法的准确性。需要复杂的统计方法来应对以下挑战:(a)几种患者特征和/或治疗可能影响结果,(B)一些特征彼此相关,(c)治疗通常取决于患者的特征,这些特征也可能影响临床结果。拟议的研究项目依赖于统计理论和计算技术的最新进展,以开发新的灵活的统计方法,以应对与以下方面有关的进一步挑战:(d)疾病演变和临床结果的多种可能纵向途径(例如,由于不同原因导致的死亡),以及一些重要的临床风险因素和处方治疗的类型和/或剂量随时间(e)的变化。通过允许临床研究人员甚至从如此复杂的数据中得出正确的结论,拟议的项目将促进对复杂疾病进展的理解。这可能最终提高临床预后质量和治疗效果。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Abrahamowicz, Michal其他文献
Modeling of cumulative effects of time-varying drug exposures on within-subject changes in a continuous outcome
- DOI:
10.1177/0962280220902179 - 发表时间:
2020-02-05 - 期刊:
- 影响因子:2.3
- 作者:
Danieli, Coraline;Sheppard, Therese;Abrahamowicz, Michal - 通讯作者:
Abrahamowicz, Michal
Analysis of Multiple Exposures An Empirical Comparison of Results From Conventional and Semi-Bayes Modeling Strategies
- DOI:
10.1097/ede.0b013e3181c297c7 - 发表时间:
2010-01-01 - 期刊:
- 影响因子:5.4
- 作者:
Momoli, Franco;Abrahamowicz, Michal;Siemiatycki, Jack - 通讯作者:
Siemiatycki, Jack
Comparison of algorithms to generate event times conditional on time-dependent covariates
- DOI:
10.1002/sim.3092 - 发表时间:
2008-06-30 - 期刊:
- 影响因子:2
- 作者:
Sylvestre, Marie-Pierre;Abrahamowicz, Michal - 通讯作者:
Abrahamowicz, Michal
Adjustment for time-dependent unmeasured confounders in marginal structural Cox models using validation sample data
- DOI:
10.1177/0962280217726800 - 发表时间:
2019-02-01 - 期刊:
- 影响因子:2.3
- 作者:
Burne, Rebecca M.;Abrahamowicz, Michal - 通讯作者:
Abrahamowicz, Michal
Multi-state relative survival modelling of colorectal cancer progression and mortality
- DOI:
10.1016/j.canep.2015.03.005 - 发表时间:
2015-06-01 - 期刊:
- 影响因子:2.6
- 作者:
Gilard-Pioc, Severine;Abrahamowicz, Michal;Quantin, Catherine - 通讯作者:
Quantin, Catherine
Abrahamowicz, Michal的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Abrahamowicz, Michal', 18)}}的其他基金
Flexible statistical models for dynamic prediction in survival analysis with time-varying prognostic factors
用于随时间变化的预后因素进行生存分析的动态预测的灵活统计模型
- 批准号:
RGPIN-2017-04339 - 财政年份:2021
- 资助金额:
$ 2.04万 - 项目类别:
Discovery Grants Program - Individual
Flexible statistical models for dynamic prediction in survival analysis with time-varying prognostic factors
用于随时间变化的预后因素进行生存分析的动态预测的灵活统计模型
- 批准号:
RGPIN-2017-04339 - 财政年份:2020
- 资助金额:
$ 2.04万 - 项目类别:
Discovery Grants Program - Individual
Flexible statistical models for dynamic prediction in survival analysis with time-varying prognostic factors
用于随时间变化的预后因素进行生存分析的动态预测的灵活统计模型
- 批准号:
RGPIN-2017-04339 - 财政年份:2019
- 资助金额:
$ 2.04万 - 项目类别:
Discovery Grants Program - Individual
Flexible statistical models for dynamic prediction in survival analysis with time-varying prognostic factors
用于随时间变化的预后因素进行生存分析的动态预测的灵活统计模型
- 批准号:
RGPIN-2017-04339 - 财政年份:2018
- 资助金额:
$ 2.04万 - 项目类别:
Discovery Grants Program - Individual
Flexible statistical models for dynamic prediction in survival analysis with time-varying prognostic factors
用于随时间变化的预后因素进行生存分析的动态预测的灵活统计模型
- 批准号:
RGPIN-2017-04339 - 财政年份:2017
- 资助金额:
$ 2.04万 - 项目类别:
Discovery Grants Program - Individual
Flexible statistical models for dynamic prediction in survival analysis with time-varying prognostic factors
用于随时间变化的预后因素进行生存分析的动态预测的灵活统计模型
- 批准号:
RGPIN-2016-04424 - 财政年份:2016
- 资助金额:
$ 2.04万 - 项目类别:
Discovery Grants Program - Individual
Extensions of flexible survival models to marginal structural and Markov multi-state modeling
灵活生存模型扩展到边缘结构和马尔可夫多状态模型
- 批准号:
105521-2011 - 财政年份:2015
- 资助金额:
$ 2.04万 - 项目类别:
Discovery Grants Program - Individual
Extensions of flexible survival models to marginal structural and Markov multi-state modeling
灵活生存模型扩展到边缘结构和马尔可夫多状态模型
- 批准号:
105521-2011 - 财政年份:2014
- 资助金额:
$ 2.04万 - 项目类别:
Discovery Grants Program - Individual
Extensions of flexible survival models to marginal structural and Markov multi-state modeling
灵活生存模型扩展到边缘结构和马尔可夫多状态模型
- 批准号:
105521-2011 - 财政年份:2012
- 资助金额:
$ 2.04万 - 项目类别:
Discovery Grants Program - Individual
Extensions of flexible survival models to marginal structural and Markov multi-state modeling
灵活生存模型扩展到边缘结构和马尔可夫多状态模型
- 批准号:
105521-2011 - 财政年份:2011
- 资助金额:
$ 2.04万 - 项目类别:
Discovery Grants Program - Individual
相似国自然基金
A study on prototype flexible multifunctional graphene foam-based sensing grid (柔性多功能石墨烯泡沫传感网格原型研究)
- 批准号:
- 批准年份:2020
- 资助金额:20 万元
- 项目类别:
相似海外基金
Flexible NLP toolkit for automatic curation of outcomes for breast cancer patients
灵活的 NLP 工具包,用于自动治疗乳腺癌患者的结果
- 批准号:
10420233 - 财政年份:2022
- 资助金额:
$ 2.04万 - 项目类别:
Flexible NLP toolkit for automatic curation of outcomes for breast cancer patients
灵活的 NLP 工具包,用于自动治疗乳腺癌患者的结果
- 批准号:
10675009 - 财政年份:2022
- 资助金额:
$ 2.04万 - 项目类别:
Flexible statistical models for dynamic prediction in survival analysis with time-varying prognostic factors
用于随时间变化的预后因素进行生存分析的动态预测的灵活统计模型
- 批准号:
RGPIN-2017-04339 - 财政年份:2021
- 资助金额:
$ 2.04万 - 项目类别:
Discovery Grants Program - Individual
Flexible Bayesian approaches to causal inference with multilevel survival data and multiple treatments
利用多级生存数据和多种治疗进行因果推理的灵活贝叶斯方法
- 批准号:
10442178 - 财政年份:2021
- 资助金额:
$ 2.04万 - 项目类别:
Flexible statistical models for dynamic prediction in survival analysis with time-varying prognostic factors
用于随时间变化的预后因素进行生存分析的动态预测的灵活统计模型
- 批准号:
RGPIN-2017-04339 - 财政年份:2020
- 资助金额:
$ 2.04万 - 项目类别:
Discovery Grants Program - Individual
Flexible Bayesian approaches to causal inference with multilevel survival data and multiple treatments
利用多级生存数据和多种治疗进行因果推理的灵活贝叶斯方法
- 批准号:
10056850 - 财政年份:2020
- 资助金额:
$ 2.04万 - 项目类别:
Flexible Tools for Pre-Clinical Studies to Answer Key Questions UnderlyingHeavy-Ion Radiotherapy
临床前研究的灵活工具可回答重离子放射治疗的关键问题
- 批准号:
9908061 - 财政年份:2019
- 资助金额:
$ 2.04万 - 项目类别:
Flexible statistical models for dynamic prediction in survival analysis with time-varying prognostic factors
用于随时间变化的预后因素进行生存分析的动态预测的灵活统计模型
- 批准号:
RGPIN-2017-04339 - 财政年份:2019
- 资助金额:
$ 2.04万 - 项目类别:
Discovery Grants Program - Individual
Flexible Tools for Pre-Clinical Studies to Answer Key Questions UnderlyingHeavy-Ion Radiotherapy
临床前研究的灵活工具可回答重离子放射治疗的关键问题
- 批准号:
10372919 - 财政年份:2019
- 资助金额:
$ 2.04万 - 项目类别:
Flexible statistical models for dynamic prediction in survival analysis with time-varying prognostic factors
用于随时间变化的预后因素进行生存分析的动态预测的灵活统计模型
- 批准号:
RGPIN-2017-04339 - 财政年份:2018
- 资助金额:
$ 2.04万 - 项目类别:
Discovery Grants Program - Individual