Combinatorial properties of matrix positivity and applications
矩阵正性的组合性质及应用
基本信息
- 批准号:227307-2009
- 负责人:
- 金额:$ 1.31万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2013
- 资助国家:加拿大
- 起止时间:2013-01-01 至 2014-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
My research interests are centered around `Positivity' in Linear Algebra and Graph Theory. Along these lines, I have proposed various research projects involving totally positive matrices and on properties of certain matrices associated to graphs.
我的研究兴趣集中在线性代数和图论中的“积极性”。沿着这些路线,我已经提出了各种研究项目,涉及全正矩阵和某些矩阵的性质与图。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Fallat, Shaun其他文献
TOTAL POSITIVITY IN MARKOV STRUCTURES
- DOI:
10.1214/16-aos1478 - 发表时间:
2017-06-01 - 期刊:
- 影响因子:4.5
- 作者:
Fallat, Shaun;Lauritzen, Steffen;Zwiernik, Piotr - 通讯作者:
Zwiernik, Piotr
On the normalized Laplacian energy and general Randic index R_1 of graphs
- DOI:
10.1016/j.laa.2010.02.002 - 发表时间:
2010-06-15 - 期刊:
- 影响因子:1.1
- 作者:
Cavers, Michael;Fallat, Shaun;Kirkland, Steve - 通讯作者:
Kirkland, Steve
Bipartiteness and the least eigenvalue of signless Laplacian of graphs
图的无符号拉普拉斯算子的二分性和最小特征值
- DOI:
10.1016/j.laa.2011.11.015 - 发表时间:
2012-05 - 期刊:
- 影响因子:1.1
- 作者:
Fallat, Shaun;Fan, Yi-Zheng - 通讯作者:
Fan, Yi-Zheng
Edge bipartiteness and signless Laplacian spread of graphs
图的边二分性和无符号拉普拉斯扩展
- DOI:
10.2298/aadm120127003f - 发表时间:
2012 - 期刊:
- 影响因子:0.9
- 作者:
Fan, Yi-Zheng;Fallat, Shaun - 通讯作者:
Fallat, Shaun
Infection in hypergraphs
超图中的感染
- DOI:
10.1016/j.dam.2017.11.012 - 发表时间:
2018-03-11 - 期刊:
- 影响因子:1.1
- 作者:
Bergen, Ryan;Fallat, Shaun;Yu, Guanglong - 通讯作者:
Yu, Guanglong
Fallat, Shaun的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Fallat, Shaun', 18)}}的其他基金
Matrix Theory with Applications to Positivity and Discrete Mathematics
矩阵理论及其在正性和离散数学中的应用
- 批准号:
RGPIN-2019-03934 - 财政年份:2022
- 资助金额:
$ 1.31万 - 项目类别:
Discovery Grants Program - Individual
Matrix Theory with Applications to Positivity and Discrete Mathematics
矩阵理论及其在正性和离散数学中的应用
- 批准号:
RGPIN-2019-03934 - 财政年份:2021
- 资助金额:
$ 1.31万 - 项目类别:
Discovery Grants Program - Individual
Matrix Theory with Applications to Positivity and Discrete Mathematics
矩阵理论及其在正性和离散数学中的应用
- 批准号:
RGPIN-2019-03934 - 财政年份:2020
- 资助金额:
$ 1.31万 - 项目类别:
Discovery Grants Program - Individual
Matrix Theory with Applications to Positivity and Discrete Mathematics
矩阵理论及其在正性和离散数学中的应用
- 批准号:
RGPIN-2019-03934 - 财政年份:2019
- 资助金额:
$ 1.31万 - 项目类别:
Discovery Grants Program - Individual
Matrix Analytics and Applications: Positivity, Graphs, and Stability
矩阵分析和应用:积极性、图表和稳定性
- 批准号:
RGPIN-2014-06036 - 财政年份:2018
- 资助金额:
$ 1.31万 - 项目类别:
Discovery Grants Program - Individual
Matrix Analytics and Applications: Positivity, Graphs, and Stability
矩阵分析和应用:积极性、图表和稳定性
- 批准号:
RGPIN-2014-06036 - 财政年份:2017
- 资助金额:
$ 1.31万 - 项目类别:
Discovery Grants Program - Individual
Matrix Analytics and Applications: Positivity, Graphs, and Stability
矩阵分析和应用:积极性、图表和稳定性
- 批准号:
RGPIN-2014-06036 - 财政年份:2016
- 资助金额:
$ 1.31万 - 项目类别:
Discovery Grants Program - Individual
Matrix Analytics and Applications: Positivity, Graphs, and Stability
矩阵分析和应用:积极性、图表和稳定性
- 批准号:
RGPIN-2014-06036 - 财政年份:2015
- 资助金额:
$ 1.31万 - 项目类别:
Discovery Grants Program - Individual
Matrix Analytics and Applications: Positivity, Graphs, and Stability
矩阵分析和应用:积极性、图表和稳定性
- 批准号:
RGPIN-2014-06036 - 财政年份:2014
- 资助金额:
$ 1.31万 - 项目类别:
Discovery Grants Program - Individual
Combinatorial properties of matrix positivity and applications
矩阵正性的组合性质及应用
- 批准号:
227307-2009 - 财政年份:2012
- 资助金额:
$ 1.31万 - 项目类别:
Discovery Grants Program - Individual
相似国自然基金
镍基UNS N10003合金辐照位错环演化机制及其对力学性能的影响研究
- 批准号:12375280
- 批准年份:2023
- 资助金额:53.00 万元
- 项目类别:面上项目
聚合铁-腐殖酸混凝沉淀-絮凝调质过程中絮体污泥微界面特性和群体流变学的研究
- 批准号:20977008
- 批准年份:2009
- 资助金额:34.0 万元
- 项目类别:面上项目
层状钴基氧化物热电材料的组织取向度与其性能关联规律研究
- 批准号:50702003
- 批准年份:2007
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Combinatorial properties of matrix positivity and applications
矩阵正性的组合性质及应用
- 批准号:
227307-2009 - 财政年份:2012
- 资助金额:
$ 1.31万 - 项目类别:
Discovery Grants Program - Individual
Combinatorial properties of matrix positivity and applications
矩阵正性的组合性质及应用
- 批准号:
227307-2009 - 财政年份:2011
- 资助金额:
$ 1.31万 - 项目类别:
Discovery Grants Program - Individual
Combinatorial properties of matrix positivity and applications
矩阵正性的组合性质及应用
- 批准号:
227307-2009 - 财政年份:2010
- 资助金额:
$ 1.31万 - 项目类别:
Discovery Grants Program - Individual
Combinatorial Metal Oxide Substrates to Enhance Osteogenic Stem Cell Functions
组合金属氧化物基质增强成骨干细胞功能
- 批准号:
8018112 - 财政年份:2010
- 资助金额:
$ 1.31万 - 项目类别:
Combinatorial Metal Oxide Substrates to Enhance Osteogenic Stem Cell Functions
组合金属氧化物基质增强成骨干细胞功能
- 批准号:
7762560 - 财政年份:2010
- 资助金额:
$ 1.31万 - 项目类别:
Combinatorial Metal Oxide Substrates to Enhance Osteogenic Stem Cell Functions
组合金属氧化物基质增强成骨干细胞功能
- 批准号:
8213444 - 财政年份:2010
- 资助金额:
$ 1.31万 - 项目类别:
Combinatorial properties of matrix positivity and applications
矩阵正性的组合性质及应用
- 批准号:
227307-2009 - 财政年份:2009
- 资助金额:
$ 1.31万 - 项目类别:
Discovery Grants Program - Individual
Investigation of the Interplay Between Algebraic and Combinatorial Matrix Properties
代数和组合矩阵性质之间相互作用的研究
- 批准号:
138251-2000 - 财政年份:2003
- 资助金额:
$ 1.31万 - 项目类别:
Discovery Grants Program - Individual
Investigation of the Interplay Between Algebraic and Combinatorial Matrix Properties
代数和组合矩阵性质之间相互作用的研究
- 批准号:
138251-2000 - 财政年份:2002
- 资助金额:
$ 1.31万 - 项目类别:
Discovery Grants Program - Individual
Investigation of the Interplay Between Algebraic and Combinatorial Matrix Properties
代数和组合矩阵性质之间相互作用的研究
- 批准号:
138251-2000 - 财政年份:2001
- 资助金额:
$ 1.31万 - 项目类别:
Discovery Grants Program - Individual